Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = planetary moon exploration mission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 22304 KiB  
Article
Optimal Low-Thrust Transfers Between Relative Planar and Spatial Quasi-Satellite Orbits in the Earth–Moon System
by Nishanth Pushparaj, Naoki Hiraiwa, Yuta Hayashi and Mai Bando
Aerospace 2025, 12(6), 524; https://doi.org/10.3390/aerospace12060524 - 10 Jun 2025
Viewed by 429
Abstract
This paper investigates the design of optimal low-thrust transfers between relative planar and spatial quasi-satellite orbits (QSOs) in the Earth–Moon system under the Circular Restricted Three-Body Problem (CR3BP). A key contribution is the adaptation of a trajectory optimization framework, previously applied to halo [...] Read more.
This paper investigates the design of optimal low-thrust transfers between relative planar and spatial quasi-satellite orbits (QSOs) in the Earth–Moon system under the Circular Restricted Three-Body Problem (CR3BP). A key contribution is the adaptation of a trajectory optimization framework, previously applied to halo orbit transfers, to accommodate the unique challenges of QSO families, especially the transition between planar and spatial configurations. The method employs a refined beam search strategy to construct diverse initial guess chains, which are then optimized via a successive convexification algorithm tailored for the spatial dynamics of QSOs. Additionally, a linear–quadratic regulator (LQR)-based control scheme is implemented to ensure long-term station-keeping of the final 3D-QSO. Simulation results demonstrate the feasibility of connecting planar and spatial QSOs with minimum-fuel trajectories while maintaining bounded terminal deviations, offering new tools for future Earth–Moon logistics and navigation infrastructure. Key findings include the successful design of low-thrust transfer trajectories between planar QSOs and 1:5 3D-QSOs, with a minimum total ΔV of 195.576 m/s over a time of flight (ToF) of 261 days, and a minimum ToF of 41 days with a total ΔV of 270.507 m/s. Additionally, the application of LQR control demonstrated the ability to maintain 1:5 3D-QSO families around the Moon with less than 12 mm/s ΔV over two months. This research provides valuable insights into the optimization of low-thrust transfer trajectories and the application of advanced control techniques for space missions, particularly those targeting lunar and planetary satellite exploration. Full article
(This article belongs to the Special Issue Spacecraft Trajectory Design)
Show Figures

Figure 1

19 pages, 12747 KiB  
Article
State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel
by Zhicheng Jia, Jingfu Jin, Xinju Dong, Yingchun Qi, Meng Zou and Qingyu Yu
Aerospace 2024, 11(10), 838; https://doi.org/10.3390/aerospace11100838 - 11 Oct 2024
Cited by 1 | Viewed by 1254
Abstract
Wheel failure is one of the worst problems for a planetary rover working on Mars or the Moon, which may lead to the interruption of the exploration mission and even the loss of mobility. In this study, a driving test of a planetary [...] Read more.
Wheel failure is one of the worst problems for a planetary rover working on Mars or the Moon, which may lead to the interruption of the exploration mission and even the loss of mobility. In this study, a driving test of a planetary rover prototype with a faulty drive wheel was conducted, and state analysis and dynamics modeling were carried out. The drag motion relationship between the faulty drive wheel and the normal wheels on the same suspension was established based on the targeted single wheel test (faulty wheel-soil bin). In order to maintain the subsequent basic detection capability of the planetary rover, an emergency control system is proposed that integrates the path planning strategy with faulty wheel priority and the motion control method of correcting heading and coordinating allocation. The experimental results and emergency strategies of this study on simulating Martian soil and terrain can provide researchers with ideas to solve such problems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

16 pages, 2721 KiB  
Article
Enhancing Planetary Exploration through Digital Twins: A Tool for Virtual Prototyping and HUMS Design
by Lucio Pinello, Lorenzo Brancato, Marco Giglio, Francesco Cadini and Giuseppe Francesco De Luca
Aerospace 2024, 11(1), 73; https://doi.org/10.3390/aerospace11010073 - 12 Jan 2024
Cited by 5 | Viewed by 2577
Abstract
In recent times, the demand for resilient space rovers has surged, which has been driven by the amplified exploration of celestial bodies such as the Moon and Mars. Recognising the limitations of direct human intervention in such environments, these rovers have gained a [...] Read more.
In recent times, the demand for resilient space rovers has surged, which has been driven by the amplified exploration of celestial bodies such as the Moon and Mars. Recognising the limitations of direct human intervention in such environments, these rovers have gained a great deal of importance. Our proposal introduces a digital twin for space exploration rovers that seamlessly integrates intricate geometric, kinematic, and dynamic models, along with sensor and control systems. It faithfully emulates genuine real-world scenarios, providing an authentic testing ground for rover prototypes and the development of damage detection algorithms. Its flexibility in replicating diverse terrains, environmental conditions, and operational scenarios significantly expedites rover development. The digital twin serves as a valuable tool in the perfecting of damage detection systems, allowing engineers to efficiently craft diagnostic algorithms. This innovative approach not only conserves valuable resources but also ensures the robustness of space mission systems, thus enhancing the overall success and safety of planetary exploration endeavours. Full article
(This article belongs to the Special Issue Space Systems Preliminary Design)
Show Figures

Figure 1

26 pages, 12907 KiB  
Article
CORTO: The Celestial Object Rendering TOol at DART Lab
by Mattia Pugliatti, Carmine Buonagura and Francesco Topputo
Sensors 2023, 23(23), 9595; https://doi.org/10.3390/s23239595 - 3 Dec 2023
Cited by 5 | Viewed by 2611
Abstract
The Celestial Object Rendering TOol (CORTO) offers a powerful solution for generating synthetic images of celestial bodies, catering to the needs of space mission design, algorithm development, and validation. Through rendering, noise modeling, hardware-in-the-loop testing, and post-processing functionalities, CORTO creates realistic scenarios. It [...] Read more.
The Celestial Object Rendering TOol (CORTO) offers a powerful solution for generating synthetic images of celestial bodies, catering to the needs of space mission design, algorithm development, and validation. Through rendering, noise modeling, hardware-in-the-loop testing, and post-processing functionalities, CORTO creates realistic scenarios. It offers a versatile and comprehensive solution for generating synthetic images of celestial bodies, aiding the development and validation of image processing and navigation algorithms for space missions. This work illustrates its functionalities in detail for the first time. The importance of a robust validation pipeline to test the tool’s accuracy against real mission images using metrics like normalized cross-correlation and structural similarity is also illustrated. CORTO is a valuable asset for advancing space exploration and navigation algorithm development and has already proven effective in various projects, including CubeSat design, lunar missions, and deep learning applications. While the tool currently covers a range of celestial body simulations, mainly focused on minor bodies and the Moon, future enhancements could broaden its capabilities to encompass additional planetary phenomena and environments. Full article
(This article belongs to the Topic Methods for Data Labelling for Intelligent Systems)
Show Figures

Figure 1

36 pages, 66724 KiB  
Review
Planetary Radar—State-of-the-Art Review
by Anne K. Virkki, Catherine D. Neish, Edgard G. Rivera-Valentín, Sriram S. Bhiravarasu, Dylan C. Hickson, Michael C. Nolan and Roberto Orosei
Remote Sens. 2023, 15(23), 5605; https://doi.org/10.3390/rs15235605 - 2 Dec 2023
Cited by 8 | Viewed by 11523
Abstract
Planetary radar observations have provided invaluable information on the solar system through both ground-based and space-based observations. In this overview article, we summarize how radar observations have contributed in planetary science, how the radar technology as a remote-sensing method for planetary exploration and [...] Read more.
Planetary radar observations have provided invaluable information on the solar system through both ground-based and space-based observations. In this overview article, we summarize how radar observations have contributed in planetary science, how the radar technology as a remote-sensing method for planetary exploration and the methods to interpret the radar data have advanced in the eight decades of increasing use, where the field stands in the early 2020s, and what are the future prospects of the ground-based facilities conducting planetary radar observations and the planned spacecraft missions equipped with radar instruments. The focus of the paper is on radar as a remote-sensing technique using radar instruments in spacecraft orbiting planetary objects and in Earth-based radio telescopes, whereas ground-penetrating radar systems on landers are mentioned only briefly. The key scientific developments are focused on the search for water ice in the subsurface of the Moon, which could be an invaluable in situ resource for crewed missions, dynamical and physical characterization of near-Earth asteroids, which is also crucial for effective planetary defense, and a better understanding of planetary geology. Full article
(This article belongs to the Special Issue Radar for Planetary Exploration)
Show Figures

Figure 1

12 pages, 2228 KiB  
Article
Chemical Engineering beyond Earth: Astrochemical Engineering in the Space Age
by Vassilis J. Inglezakis, Donald Rapp, Panos Razis and Antonis A. Zorpas
Sustainability 2023, 15(17), 13227; https://doi.org/10.3390/su151713227 - 4 Sep 2023
Cited by 5 | Viewed by 4511 | Correction
Abstract
The Space Race in the second half of the 20th century was primarily concerned with getting there and back. Gradually, technology and international collaboration opened new horizons, but human activity was mostly restricted around Earth’s orbit, while robotic missions were sent to solar [...] Read more.
The Space Race in the second half of the 20th century was primarily concerned with getting there and back. Gradually, technology and international collaboration opened new horizons, but human activity was mostly restricted around Earth’s orbit, while robotic missions were sent to solar system planets and moons. Now, nations and companies claim extraterrestrial resources and plans are in place to send humans and build bases on the Moon and Mars. Exploration and discovery are likely to be followed by exploitation and settlement. History suggests that the next step is the development of space industry. The new industrial revolution will take place in space. Chemical engineers have been educated for more than a century on designing processes adapted to the Earth’s conditions, involving a range of raw materials, atmospheric pressure, ambient temperature, solar radiation, and 1-g. In space, the raw materials differ, and the unique pressure, temperature and solar radiation conditions require new approaches and methods. In the era of space exploration, a new educational concept for chemical engineers is necessary to prepare them for playing key roles in space. To this end, we introduce Astrochemical Engineering as an advanced postgraduate course and we propose a 2-year 120 ECTS MEng curriculum with a brief description of the modules and learning outcomes. The first year includes topics such as low-gravity process engineering, cryogenics, and recycling systems. The second year includes the utilization of planetary resources and materials for space resources. The course culminates in an individual design project and comprises two specializations: Process Engineering and Space Science. The course will equip engineers and scientists with the necessary knowledge for the development of advanced processes and industrial ecologies based on closed self-sustained systems. These can be applied on Earth to help reinvent sustainability and mitigate the numerous challenges humanity faces. Full article
(This article belongs to the Special Issue Sustainable Development Goals: A Pragmatic Approach)
Show Figures

Figure 1

28 pages, 8096 KiB  
Article
Integrated Conceptual Design and Parametric Control Assessment for a Hybrid Mobility Lunar Hopper
by Jasmine Rimani, Giordana Bucchioni, Andrea Dan Ryals, Nicole Viola and Stéphanie Lizy-Destrez
Aerospace 2023, 10(8), 669; https://doi.org/10.3390/aerospace10080669 - 27 Jul 2023
Cited by 1 | Viewed by 2114
Abstract
The lunar lava tubes are envisioned as possible hosting structures for a human base in the Moon’s equatorial regions, providing shelter from radiations, micrometeoroids, and temperature excursion. A first robotic mission is set to scout the habitability of these underground architectures in the [...] Read more.
The lunar lava tubes are envisioned as possible hosting structures for a human base in the Moon’s equatorial regions, providing shelter from radiations, micrometeoroids, and temperature excursion. A first robotic mission is set to scout the habitability of these underground architectures in the near future. The communication inside these underground tunnels is heavily constrained; hence, the scouting system should rely on a high degree of autonomy. At the same time, the exploration system may encounter different types of terrain, requiring an adaptable mobility subsystem able to travel fast on basaltic terrain while avoiding considerable obstacles. This paper presents a cave explorer’s mission study and preliminary sizing targeting the lunar lava tubes. The study proposes using a hybrid mobility system with wheels and thrusters to navigate smoothly inside the lava tubes. The peculiar mobility system of the cave explorer requires an accurate study of the adaptability of its control capabilities with the change of mass for a given set of sensors and actuators. The combination of conceptual design techniques and control assessment gives the engineer a clear indication of the feasible design box for the studied system during the initial formulation phases of a mission. This first part of the study focuses on framing the stakeholders’ needs and identifying the required capabilities of the cave explorer. Furthermore, the study focuses on assessing a design box in terms of mass and power consumption for the cave explorer. Following different mission-level assessments, a more detailed design of the cave explorer is discussed, providing an initial design in terms of mass and power consumption. Finally, the objective shifts toward studying the performances of the guidance, navigation, and control (GNC) algorithms varying the mass of the cave explorer. The GNC significantly impacts the design box of the surface planetary system. Hence, investigating its limitations can indicate the feasibility of mass growth to accommodate, for example, more payload. Full article
(This article belongs to the Special Issue Space Robotics and Mechatronics)
Show Figures

Figure 1

28 pages, 24850 KiB  
Review
Radar Observation of the Lava Tubes on the Moon and Mars
by Xiaohang Qiu and Chunyu Ding
Remote Sens. 2023, 15(11), 2850; https://doi.org/10.3390/rs15112850 - 30 May 2023
Cited by 15 | Viewed by 6631
Abstract
The detection of lava tubes beneath the surfaces of the Moon and Mars has been a popular research topic and challenge in planetary radar observation. In recent years, the Moon–based ground penetrating radar (GPR) carried by the Chinese Chang’e–3/–4 mission, the RIMFAX radar [...] Read more.
The detection of lava tubes beneath the surfaces of the Moon and Mars has been a popular research topic and challenge in planetary radar observation. In recent years, the Moon–based ground penetrating radar (GPR) carried by the Chinese Chang’e–3/–4 mission, the RIMFAX radar carried by the Mars mission Perseverance, and the RoSPR radar and MOSIR radar carried by China’s Tianwen–1 orbiter have extensively promoted the exploration of the underground space of extraterrestrial bodies, which is crucial for the future utilization and development of these spaces. This paper expounds on the principles, methods, and detection results of using GPR to detect lava tubes on the Moon and Mars. First, lava tubes’ formation mechanism and morphological characteristics are outlined, followed by an introduction to GPR’s working principles and classification. The advantages, disadvantages, and prospects of different types of radar in detecting the lava tubes are analyzed. Finally, the distribution of lava tubes on the Moon and Mars is briefly summarized, and the potential utilization of lava tubes is discussed. We believe that the GPR technique is an effective geophysical method for exploring the underground structures of the Moon and Mars, and the lava tubes beneath the surface of extraterrestrial bodies can provide important references for selecting future Moon and Mars bases. Full article
Show Figures

Figure 1

13 pages, 1531 KiB  
Article
Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development
by Bimi Shrestha, Rafael Hernandez, Dhan Lord B. Fortela, Wayne Sharp, Andrei Chistoserdov, Daniel Gang, Emmanuel Revellame, William E. Holmes and Mark E. Zappi
BioTech 2023, 12(1), 8; https://doi.org/10.3390/biotech12010008 - 10 Jan 2023
Cited by 3 | Viewed by 3941
Abstract
The prospect of humans inhabiting planetary bodies is gaining interest among research and development communities, with the moon being considered as a transitory base camp and Mars the next planet humans will inhabit. NASA’s Mission to Mars program is set to have humans [...] Read more.
The prospect of humans inhabiting planetary bodies is gaining interest among research and development communities, with the moon being considered as a transitory base camp and Mars the next planet humans will inhabit. NASA’s Mission to Mars program is set to have humans inhabiting Mars within on-planet space camps by the Year 2030, which has tremendously increased research and development for space exploration—including research oriented toward human life support in long-term planetary lodging camps. The sustenance of human life on Mars will not be trivial due to the unavailability of an appropriate atmosphere and usable water. This situation requires a self-sustaining human life support system that can provide the basic needs such are breathable air, potable water, food, and energy. The feasibility of sending a payload with resources adequate to support long-term human inhabitation is not reasonable, which means every resource within a Mars space camp is valuable, including human-produced wastes. A biorefinery system that treats wastewater and can also produce valuable products such as oxygen, food, and energy offers a form of circular utilization of valuable resources. To conduct research for such systems requires a wastewater influent that is representative of the wastewater to be generated by the space crew within this isolated, confined environment, which is different from what is generated on Earth due to limited variability in diet, human activity, and lifestyle in this confined area. Collection of actual wastewater influent from an isolated environment supporting humans is challenging. Additionally, to ensure a safe working environment in the laboratory and avoid the imposed threat of handling actual human feces, the proposed synthetic, non-human feces containing wastewater influent formulation offers an easy-to-produce and safer-to-handle option. This paper reviews several synthetic wastewater compositions that have been formulated for space exploration purposes. None of the formulations were found to be realistic nor adequate for a space-camp-type scenario. Thus, the formulation of a synthetic wastewater for simulating a wastewater influent from a human space-based camp is proposed in this paper. In addition, the physical, chemical, and biodegradation characteristics of the final formulation designed are presented to illustrate the value of the proposed influent formulation. Full article
(This article belongs to the Topic Advances in Environmental Biotechnology (AEB))
Show Figures

Figure 1

11 pages, 1144 KiB  
Review
Effectiveness of CPR in Hypogravity Conditions—A Systematic Review
by Remco Overbeek, Jan Schmitz, Lucas Rehnberg, Yacine Benyoucef, Fabian Dusse, Thais Russomano and Jochen Hinkelbein
Life 2022, 12(12), 1958; https://doi.org/10.3390/life12121958 - 23 Nov 2022
Cited by 2 | Viewed by 2770
Abstract
(1) Background: Cardiopulmonary resuscitation (CPR), as a form of basic life support, is critical for maintaining cardiac and cerebral perfusion during cardiac arrest, a medical condition with high expected mortality. Current guidelines emphasize the importance of rapid recognition and prompt initiation of high-quality [...] Read more.
(1) Background: Cardiopulmonary resuscitation (CPR), as a form of basic life support, is critical for maintaining cardiac and cerebral perfusion during cardiac arrest, a medical condition with high expected mortality. Current guidelines emphasize the importance of rapid recognition and prompt initiation of high-quality CPR, including appropriate cardiac compression depth and rate. As space agencies plan missions to the Moon or even to explore Mars, the duration of missions will increase and with it the chance of life-threatening conditions requiring CPR. The objective of this review was to examine the effectiveness and feasibility of chest compressions as part of CPR following current terrestrial guidelines under hypogravity conditions such as those encountered on planetary or lunar surfaces; (2) Methods: A systematic literature search was conducted by two independent reviewers (PubMed, Cochrane Register of Controlled Trials, ResearchGate, National Aeronautics and Space Administration (NASA)). Only controlled trials conducting CPR following guidelines from 2010 and after with advised compression depths of 50 mm and above were included; (3) Results: Four different publications were identified. All studies examined CPR feasibility in 0.38 G simulating the gravitational force on Mars. Two studies also simulated hypogravity on the Moon with a force of 0.17 G/0,16 G. All CPR protocols consisted of chest compressions only without ventilation. A compression rate above 100/s could be maintained in all studies and hypogravity conditions. Two studies showed a significant reduction of compression depth in 0.38 G (−7.2 mm/−8.71 mm) and 0.17 G (−12.6 mm/−9.85 mm), respectively, with nearly similar heart rates, compared to 1 G conditions. In the other two studies, participants with higher body weight could maintain a nearly adequate mean depth while effort measured by heart rate (+23/+13.85 bpm) and VO2max (+5.4 mL·kg−1·min−1) increased significantly; (4) Conclusions: Adequate CPR quality in hypogravity can only be achieved under increased physical stress to compensate for functional weight loss. Without this extra effort, the depth of compression quickly falls below the guideline level, especially for light-weight rescuers. This means faster fatigue during resuscitation and the need for more frequent changes of the resuscitator than advised in terrestrial guidelines. Alternative techniques in the straddling position should be further investigated in hypogravity. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

16 pages, 818 KiB  
Article
Value Iteration Networks with Double Estimator for Planetary Rover Path Planning
by Xiang Jin, Wei Lan, Tianlin Wang and Pengyao Yu
Sensors 2021, 21(24), 8418; https://doi.org/10.3390/s21248418 - 16 Dec 2021
Cited by 8 | Viewed by 2956
Abstract
Path planning technology is significant for planetary rovers that perform exploration missions in unfamiliar environments. In this work, we propose a novel global path planning algorithm, based on the value iteration network (VIN), which is embedded within a differentiable planning module, built on [...] Read more.
Path planning technology is significant for planetary rovers that perform exploration missions in unfamiliar environments. In this work, we propose a novel global path planning algorithm, based on the value iteration network (VIN), which is embedded within a differentiable planning module, built on the value iteration (VI) algorithm, and has emerged as an effective method to learn to plan. Despite the capability of learning environment dynamics and performing long-range reasoning, the VIN suffers from several limitations, including sensitivity to initialization and poor performance in large-scale domains. We introduce the double value iteration network (dVIN), which decouples action selection and value estimation in the VI module, using the weighted double estimator method to approximate the maximum expected value, instead of maximizing over the estimated action value. We have devised a simple, yet effective, two-stage training strategy for VI-based models to address the problem of high computational cost and poor performance in large-size domains. We evaluate the dVIN on planning problems in grid-world domains and realistic datasets, generated from terrain images of a moon landscape. We show that our dVIN empirically outperforms the baseline methods and generalize better to large-scale environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 11156 KiB  
Article
Visual SLAM-Based Robotic Mapping Method for Planetary Construction
by Sungchul Hong, Antyanta Bangunharcana, Jae-Min Park, Minseong Choi and Hyu-Soung Shin
Sensors 2021, 21(22), 7715; https://doi.org/10.3390/s21227715 - 19 Nov 2021
Cited by 21 | Viewed by 4777
Abstract
With the recent discovery of water-ice and lava tubes on the Moon and Mars along with the development of in-situ resource utilization (ISRU) technology, the recent planetary exploration has focused on rover (or lander)-based surface missions toward the base construction for long-term human [...] Read more.
With the recent discovery of water-ice and lava tubes on the Moon and Mars along with the development of in-situ resource utilization (ISRU) technology, the recent planetary exploration has focused on rover (or lander)-based surface missions toward the base construction for long-term human exploration and habitation. However, a 3D terrain map, mostly based on orbiters’ terrain images, has insufficient resolutions for construction purposes. In this regard, this paper introduces the visual simultaneous localization and mapping (SLAM)-based robotic mapping method employing a stereo camera system on a rover. In the method, S-PTAM is utilized as a base framework, with which the disparity map from the self-supervised deep learning is combined to enhance the mapping capabilities under homogeneous and unstructured environments of planetary terrains. The overall performance of the proposed method was evaluated in the emulated planetary terrain and validated with potential results. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

31 pages, 5697 KiB  
Article
Trajectory Design of Perseus: A CubeSat Mission Concept to Phobos
by Ravi teja Nallapu, Graham Dektor, Nalik Kenia, James Uglietta, Shota Ichikawa, Mercedes Herreras-Martinez, Akshay Choudhari, Aman Chandra, Stephen Schwartz, Erik Asphaug and Jekanthan Thangavelautham
Aerospace 2020, 7(12), 179; https://doi.org/10.3390/aerospace7120179 - 15 Dec 2020
Cited by 2 | Viewed by 7129
Abstract
The Martian satellites Phobos and Deimos hold many unanswered questions that may provide clues to the origin of Mars. These moons are low Δv stopover sites to Mars. Some human missions to Mars typically identify Phobos and Deimos as staging bases for [...] Read more.
The Martian satellites Phobos and Deimos hold many unanswered questions that may provide clues to the origin of Mars. These moons are low Δv stopover sites to Mars. Some human missions to Mars typically identify Phobos and Deimos as staging bases for Mars surface exploration. Astronauts could base initial operations there in lieu of repeated voyages to and from the planet surface, to refuel transiting spacecraft, to teleoperate robotics and other critical machinery, and to develop habitable infrastructure ahead of human landings. Despite their strategic and scientific significance, there has been no successful dedicated mission to either moon. For this reason, we propose Perseus, a geological imaging CubeSat mission to Phobos. Perseus, a 27U, 54kg CubeSat will return thermal and visible images at resolutions better than currently available over most of Phobos’ surface. This includes visible images at 5m/pixel and thermal images at 25m/pixel of Phobos’ surface. The Perseus mission is nominally intended to be a co-orbital mission, where the spacecraft will encounter Phobos on its Martian orbit. However, a hyperbolic rendezvous mission concept, to image Phobos on a hyperbolic flyby, is also considered to reduce the risks associated with orbit capture and to reduce mission costs. This paper presents the preliminary feasibility, science objectives, and technological development challenges of achieving these science goals. We then formulate two rendezvous concepts as a series of three nonlinear optimization problems that span the design tree of mission concepts. The tree’s root node is the heliocentric cruise problem, which identifies the near-optimal launch and arrival windows for the Perseus spacecraft. The leaf nodes of the design tree are the two rendezvous concepts that identify near-optimal co-orbital and hyperbolic trajectories for Phobos’ reconnaissance. The design problems are solved using evolutionary algorithms, and the performance of the selected mission concepts is then examined. The results indicate that a co-orbital encounter allows about one encounter per day with about 6 min per encounter. The hyperbolic encounter, on the other hand, allows a single encounter where the spacecraft will spend about 2 min in the imaging region with respect to Phobos. The spacecraft will obtain higher resolution images of Phobos on this feasible region than have ever been seen for most of the surface. These detailed images will help identify candidate landing sites and provide critical data to derisk future surface missions to Phobos. Full article
(This article belongs to the Special Issue Small Satellite Technologies and Mission Concepts)
Show Figures

Figure 1

19 pages, 24630 KiB  
Article
A Global Gravity Reconstruction Method for Mercury Employing Deep Convolutional Neural Network
by Shuheng Zhao, Denghong Liu, Qiangqiang Yuan and Jie Li
Remote Sens. 2020, 12(14), 2293; https://doi.org/10.3390/rs12142293 - 17 Jul 2020
Cited by 6 | Viewed by 2994
Abstract
Mercury, the enigmatic innermost planet in the solar system, is one of the most important targets of space exploration. High-quality gravity field data are significant to refine the physical characterization of Mercury in planetary exploration missions. However, Mercury’s gravity model is limited by [...] Read more.
Mercury, the enigmatic innermost planet in the solar system, is one of the most important targets of space exploration. High-quality gravity field data are significant to refine the physical characterization of Mercury in planetary exploration missions. However, Mercury’s gravity model is limited by relatively low spatial resolution and stripe noises, preventing fine-scale analysis and applications. By analyzing Mercury’s gravity data and topography data in the 2D spatial field, we find they have fairly high spatial structure similarity. Based on this, in this paper, a novel convolution neural network (CNN) approach is proposed to improve the quality of Mercury’s gravity field data. CNN can extract the spatial structure features of gravity data and construct a nonlinear mapping between low- and high-degree data directly. From a low-degree gravity input, the corresponding initial high-degree result can be obtained. Meanwhile, the structure characteristics of the high-resolution digital elevation model (DEM) are extracted and fused to the initial data, to get the final stripe-free result with improved resolution. Given the paucity of Mercury’s data, high-quality lunar datasets are employed as pretraining data after verifying the spatial similarity between gravity and terrain data of the Moon. The HgM007 gravity field obtained by the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) mission at Mercury is selected for experiments to test the ability of the proposed algorithm to remove the stripes caused by quality differences of the highly eccentric orbit data. Experimental results show that our network can directly obtain stripe-free and higher-degree data via inputting low-degree data and implicitly assuming a lunar-like relation between crustal density and porosity. Albeit the CNN-based method cannot be sensitive to subsurface features not present in the initial dataset, it still provides a new perspective for the gravity field refinement. Full article
(This article belongs to the Special Issue Planetary 3D Mapping, Remote Sensing and Machine Learning)
Show Figures

Graphical abstract

16 pages, 6067 KiB  
Article
Vision-Based Decision Support for Rover Path Planning in the Chang’e-4 Mission
by Yexin Wang, Wenhui Wan, Sheng Gou, Man Peng, Zhaoqin Liu, Kaichang Di, Lichun Li, Tianyi Yu, Jia Wang and Xiao Cheng
Remote Sens. 2020, 12(4), 624; https://doi.org/10.3390/rs12040624 - 14 Feb 2020
Cited by 25 | Viewed by 4910
Abstract
In planetary rover missions, rover path planning is critical to ensure the safety and efficiency of the rover traverse and in situ explorations. In the Chang’e-4 (CE-4) mission, we have proposed and developed vision-based decision support methods comprising obstacle map generation and path [...] Read more.
In planetary rover missions, rover path planning is critical to ensure the safety and efficiency of the rover traverse and in situ explorations. In the Chang’e-4 (CE-4) mission, we have proposed and developed vision-based decision support methods comprising obstacle map generation and path evaluation for the rover. At each waypoint along the rover traverse, digital elevation model (DEM) is automatically generated, which is then used for obstacle map generation and path searching. For path evaluation, the searched path and the predicted wheel trajectories are projected onto the original images captured by different cameras to coincide with the real observation scenario. The proposed methods have been applied in the CE-4 mission to support teleoperation of the rover, and examples of multiple applications used in the mission are presented in this paper. Under the support of the proposed techniques, by the end of the 14th lunar day (3 February 2020), the rover has already travelled 367.25 meters on the far side of the Moon. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop