Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development
Abstract
:1. Introduction
2. Review of Human Feces Composition
3. Review of Synthetic Urine Composition
4. Review of Previously Proposed Synthetic Wastewater Influent Compositional Formulations
5. Design of a Synthetic Wastewater Influent Formulation
6. Characteristics of Synthetic Wastewater Based on Analytical Testing
7. Biodegradation Assay Testing of the Proposed Influent
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linck, E.; Crane, K.W.; Zuckerman, B.L.; Corbin, B.A.; Meyers, R.M.; Williams, S.R.; Carioscia, S.A.; Garcia, R.; Lal, B. Evaluation of a Human Mission to Mars by 2033. Ida 2019, p. 175. Available online: https://www.ida.org/-/media/feature/publications/e/ev/evaluation-of-a-human-mission-to-mars-by-2033/d-10510.ashx (accessed on 13 September 2022).
- Xia, S.; Morse, A.; Jackson, A.; Wiesner, T.F. Simulation of a Closed Loop Wastewater Treatment System for Extended Space Flight. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 1252–1257. [Google Scholar]
- Linne, D.L.; Palaszewski, B.A.; Gokoglu, S.; Gallo, C.A.; Balasubramaniam, R.; Hegde, U.G. Waste management options for long-duration space missions: When to reject, reuse, or recycle. In Proceedings of the 7th Symposium on Space Resource Utilization, National Harbor, MD, USA, 13–17 January 2014; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 2017, 91, 87–98. [Google Scholar] [CrossRef]
- Moore, C.L. Technology development for human exploration of Mars. Acta Astronaut. 2010, 67, 1170–1175. [Google Scholar] [CrossRef]
- Kayatin, M.J.; Carter, D.L.; Schunk, R.G.; Pruitt, J.M. Upgrades to the ISS Water Recovery System. In Proceedings of the 45th International Conference on Environmental Systems, Bellevue, WA, USA, 12–16 July 2015; pp. 10–14. [Google Scholar]
- Cumbie, B.; Whitelaw, J.; Dai, F.; Matel, H.A.; Jackson, W.A. Biological Treatment of Space Habitation Waste Waters using a Two Stage Reactor. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Hintze, P.E.; Caraccio, A.J.; Anthonl, S.M.; Nur, M.; Directorate, T.; Devor, R.; Captain, J.G.; America, Q.N.; Station, I.S.; Reduction, L.; et al. Mass During Long Duration Space Missions. Gravit. Space Res. 2013, 9, 1–6. [Google Scholar]
- Verostko, C.E.; Carrier, C.; Finger, B.W.; Verostko, C.E.; Carrier, C.; Finger, B.W. Ersatz Wastewater Formulations for Testin Water Recovery Systems. SAE Trans. 2004, 113, 1008–1024. [Google Scholar]
- Wignarajah, K.; Litwiller, E.; Fisher, J.W.; Hogan, J. Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems. SAE Trans. 2006, 115, 424–430. [Google Scholar] [CrossRef]
- Bockris, J.O. Electrochemical Processing of Solid Waste [Microform]: Semi Annual Report/Prepared by Laboratory for Surface Electrochemistry, Department of Chemistry, Texas A&M University; Principal Investigator, John O’M. Bockris. [Washington, DC: Springfield, Va.: National Aeronautics and Space Administration; National Technical Information Service, Distributor. 1987. Available online: https://ntrs.nasa.gov/citations/19880006470 (accessed on 13 September 2022).
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaba, L.; Hitchens, C.D.; Bockris, J.O. Electrochemical incineration of wastes. SAE Tech. Pap. 1989, 137, 1341–1345. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bibra, M.; Venkateswaran, K.; Salem, D.R. Bioresource Technology Biohydrogen production from space crew ’ s waste simulants using thermophilic consolidated bioprocessing. Bioresour. Technol. 2018, 255, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Penn, R.; Ward, B.J.; Strande, L.; Maurer, M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 2018, 132, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Volpin, F.; Badeti, U.; Wang, C.; Jiang, J.; Vogel, J.; Freguia, S.; Fam, D.; Cho, J.; Phuntsho, S.; Shon, H.K. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes 2020, 11, 327. [Google Scholar] [CrossRef] [PubMed]
- Colón, J.; Forbis-Stokes, A.A.; Deshusses, M.A. Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy Sustain. Dev. 2015, 29, 57–64. [Google Scholar] [CrossRef]
- Sarigul, N.; Korkmaz, F.; Kurultak, İ. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9, 20159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.A.; Leidich, J.; Klaus, D.M. A Sustainable Regolith-Based Water Recovery Concept for the Lunar Outpost A Sustainable Regolith-Based Water Recovery Concept for the Lunar Outpost. In Proceedings of the International Convention and Expo Summit (ICES), Copenhagen, Denmark, 22–29 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.D.; Semmens, M.J.; LaPara, T.M. Biological treatment of a synthetic space mission wastewater using a membrane-aerated, membrane-coupled bioreactor (M2BR). J. Ind. Microbiol. Biotechnol. 2008, 35, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Mavioso, J.F.; Galvão, A.F. Wastewater Treatment through Constructed Wetlands: The Influence of Vegetation. Available online: https://webmail.zimbra.louisiana.edu/service/home/~/?auth=co&loc=en_US&id=894&part=2 (accessed on 14 September 2018).
- Nopens, I.; Capalozza, C.; Vanrolleghem, P.A. Technical Report: Stability Analysis of a Synthetic Municipal Wastewater. 2001. Available online: https://www.researchgate.net/publication/237711843_Stability_analysis_of_a_synthetic_municipal_wastewater (accessed on 13 September 2022).
- Wiegant, W.M.; Lettinga, G. in Upflo w Anaerobic Sludge Blanket Reactors. Biotechnol. Bioeng. 1985, 27, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Lelemia Irvine, J.; Yang, P. Biological Treatment and Reuse of Human Space Exploration Wastewater. Available online: http://www.spacegrant.hawaii.edu/reports/21_SP09/JIrvine_SP09.pdf (accessed on 10 September 2018).
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed]
Major Components of Human Feces Based on the Chemical Composition (Dry Weight) | |
---|---|
Fat content | 5–25% |
Carbohydrate (fiber) | 10–30% |
Nitrogenous material | <2% |
Minerals | 5–8% |
Bacterial debris | 10–30% |
Protein content | 10–15% |
(i) | (ii) | (iii) | (iv) | (v) | |
---|---|---|---|---|---|
%W | %W | % W | g/L | gram | |
Cellulose | 6 | 10 | 15 | 380 | 600 |
Polyethyleneglycol | 3 | 15 | |||
Peanut oil | 11 | 20 | 200 | ||
Miso | 17 | 17.5 | 15 | ||
Potassium Chloride | 2 | 2 | 10 | 40 | 40 |
Calcium Chloride | 1 | 1 | 30 | ||
Water | 60 | 1500 | |||
Monocalcium Phosphate | 10 | ||||
Yeast | 30 | 380 | |||
Torpulina | 430 | ||||
E. coli | 30 | 120 | |||
Casein | 170 | ||||
Oleic Acid | 20 | 370 | |||
Sodium Chloride | 2 | 40 | |||
Ground, Dried Vegetable | 50 mg | ||||
Inorganics | 5 | ||||
Psyllium | 17.5 |
Synthetic Urine Composition | |||||
---|---|---|---|---|---|
Colon, et al. (g/L) [17] | Urine 1 (g/L) from Hintze, et al. [8] | Urine 2 (g/L) from Hintze, et al. [8] | Urine 3 from Hintze (g/L) [8] | Sarigul, et al. (g/L) [18] | |
Urea (CH4N2O) | 14.2 | 52.021 | 5.2 | 15.00 | |
Creatinine (C4H7N3O) | 3.00 | 5.221 | 0.52 | 0.881 | |
Ammonium citrate (C6H11NO7) | 2.00 | 12.34 | 1.23 | ||
Sodium Chloride (NaCl) | 8.00 | 23.126 | 2.31 | 1.756 | |
Potassium Chloride (KCl) | 1.65 | 5.436 | 0.54 | 2.308 | |
Potassium bisulfate (KHSO4) | 0.50 | ||||
Magnesium Sulfate (MgSO4) | 0.20 | ||||
Potassium dihydrogen phosphate (KH2PO4) | 1.75 | 1.069 | 0.11 | ||
Potassium bicarbonate (KHCO3) | 0.50 | 2.197 | 0.22 | ||
Histidine, soluble (C6H9N3O2) | 0.958 | 0.1 | |||
Taurine (C2H7NO3S) | 0.556 | 0.06 | |||
Glutamic acid (C5H9NO4) | 1.66 | 0.17 | |||
Uric Acid (C5H4N4O3) | 0.250 | ||||
Glucose (96%) (C6H12O6) | 2.636 | ||||
Ammonium formate (97%) (NH4HCO2) | 1.466 | 0.15 | |||
Ammonium oxalate monohydrate (C2H10N2O5) | 0.665 | 0.07 | |||
Trisodium citrate dihydrate (Na3C6H5O7.2H2O) | 0.720 | ||||
Magnesium chloride hexahydrate (MgCl2.6(H2O)) | 5.483 | 0.55 | |||
Potassium carbonate (K2CO3) | 0.474 | 0.05 | |||
Potassium sulfate (K2SO4) | 7.424 | 0.74 | |||
Calcium Chloride (CaCl2) | 0.221 | 0.02 | 0.185 | ||
Sodium sulfate (Na2SO4) | 4.144 | 0.41 | 1.700 | ||
Ammonium Chloride (NH4Cl) | 1.266 | ||||
Potassium oxalate monohydrate (K2C2O4.H2O) | 0.0350 | ||||
Magnesium sulfate heptahydrate (MgSO4.7H2O) | 1.082 | ||||
Sodium phosphate monobasic dihydrate (NaH2PO4.2H2O) | 2.9212 | ||||
Sodium phosphate dibasic dihydrate (Na2HPO4.2H2O) | 0.831 |
Ersatz | Transit Wastewater | Early Planetary Base Wastewater |
---|---|---|
pH | 2.6 ± 0.2 | 8.9 ±0.2 |
TOC (mg/L) | 2209 ± 221 | 631 ± 63 |
TIC (mg/L) | 0 | 391 ± 59 |
Chloride (mg/L) | 1870 ± 281 | 514 ± 77 |
Phosphate (mg/L) | 75 ± 11 | 116 ± 17 |
Ammonium-N (mg/L) | 221 ± 33 | 852 ± 128 |
Component | Quantity (Per L) | Component | Quantity (Per L) |
---|---|---|---|
Shampoo (suave for kids) | 275 mg | Acetic acid | 34 mL |
Ammonium bicarbonate | 2.3 g | Benzoic acid | 1 mg |
Ammonium hydroxide | 300 mg | Benzyl alcohol | 5 µL |
Ammonium citrate | 370 mg | Ethanol | 6.5 mL |
Ammonium formate | 45 mg | Acetone | 0.5 µL |
Ammonium oxalate monohydrate | 20 mg | Caprolactam | 4 mg |
Sodium chloride | 690 mg | Phenol | 0.6 mg |
Potassium chloride | 200 mg | N, N-dimethylformamide | 0.7 µL |
Sodium bicarbonate | 200 mg | Ethylene glycol | 3.3 µL |
Potassium phosphate monobasic | 166 mg | 4-Ethyl morpholine | 1.5 µL |
Potassium sulfate | 690 mg | Formaldehyde | 3 µL |
Urea | 160 mg | Formic acid | 4.4 µL |
Lactic acid | 80 mg | Methanol | 7.6 µL |
Creatinine | 160 mg | 1,2-Propanediol | 2 µL |
Histidine | 29 mg | 2-Propanol | 2.4 µL |
Taurine | 17 mg | Propionic acid | 15 µL |
Glutamic acid | 51 mg | ||
Glucose | 78 mg |
Synthetic Municipal Wastewater Composition (mg/L) | ||||
---|---|---|---|---|
Component | I | II | III | IV |
Starch | 20,000 | 122 | ||
Sodium Acetate | 20,000 | 131.6 | ||
Urea | 15,000 | 91.74 | ||
Peptone (Pancreatic) | 6000 | 17.4 | ||
Powdered Milk | 3000 | 116 | ||
Soy Oil | 3000 | 29 | ||
Fertilizer (L) | 200 | |||
Magnesium Hydrogen Phosphate Trihydrate | 29 | |||
Potassium Phosphate Dibasic | 260 | |||
Potassium Phosphate Monobasic | 3.14 | 520 | ||
Ferrous Sulfate Heptahydrate | 5.8 | |||
Yeast | 52.24 | 100–300 | ||
Manganese Sulfate Monohydrate | 0.11 | 20 | ||
Ammonium Chloride | 12.75 | 170 | ||
Glucose | ||||
Monosodium Phosphate | 37 | |||
Magnesium Sulfate | 100 | |||
Calcium Chloride | 20 | |||
Magnesium Chloride Monohydrate | 9 | |||
Potassium Chloride | 25 | |||
Sucrose | 400 | |||
Ammonium Sulfate | 200 | |||
Sodium Carbonate | 400 | |||
Ferric Chloride hexahydrate | 20 | |||
Trace metals | A | 1 mL of B |
Component | g/L |
---|---|
Cafeteria Food Waste | 3 |
Peanut Oil | 2 |
Urea | 1 |
Starch | 3 |
Glucose | 2 |
Yeast Extract | 0.075 |
Dried Dog Food | 0.150 |
Dog Feces | 2 |
Peptone | 0.05 |
NPK Fertilizer | 1 |
Sodium Acetate | 0.15 |
Ammonium Chloride | 0.020 |
Sodium Chloride | 0.030 |
Potassium Chloride | 0.040 |
Calcium Chloride | 0.030 |
Ferrous Sulfate Heptahydrate | 0.002 |
Magnesium Hydrogen Phosphate Trihydrate | 0.012 |
Potassium Phosphate Monobasic | 0.001 |
Casein (Milk Powder) | 0.005 |
Bile (ox) | 0.010 |
Feed | mg/L |
---|---|
pH | 6.6 |
Soluble COD | 345 ± 75 |
Total Carbon (TC) | 150 ± 15 |
Total Inorganic Carbon (TIC) | 22 ± 7 |
Total Organic Carbon (TOC) | 133 ± 20 |
Total Ammonia Nitrogen (TAN) | 15 ± 8 |
Reactive Phosphorus | 17 ± 4 |
Total Nitrogen (TN) | 34 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.; Hernandez, R.; Fortela, D.L.B.; Sharp, W.; Chistoserdov, A.; Gang, D.; Revellame, E.; Holmes, W.E.; Zappi, M.E. Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development. BioTech 2023, 12, 8. https://doi.org/10.3390/biotech12010008
Shrestha B, Hernandez R, Fortela DLB, Sharp W, Chistoserdov A, Gang D, Revellame E, Holmes WE, Zappi ME. Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development. BioTech. 2023; 12(1):8. https://doi.org/10.3390/biotech12010008
Chicago/Turabian StyleShrestha, Bimi, Rafael Hernandez, Dhan Lord B. Fortela, Wayne Sharp, Andrei Chistoserdov, Daniel Gang, Emmanuel Revellame, William E. Holmes, and Mark E. Zappi. 2023. "Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development" BioTech 12, no. 1: 8. https://doi.org/10.3390/biotech12010008
APA StyleShrestha, B., Hernandez, R., Fortela, D. L. B., Sharp, W., Chistoserdov, A., Gang, D., Revellame, E., Holmes, W. E., & Zappi, M. E. (2023). Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development. BioTech, 12(1), 8. https://doi.org/10.3390/biotech12010008