Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,338)

Search Parameters:
Keywords = planes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 (registering DOI) - 2 Aug 2025
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 (registering DOI) - 1 Aug 2025
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

13 pages, 1581 KiB  
Article
An Ultrasound-Guided Thoracolumbar Erector Spinae Plane Block: An Experimental Preliminary Study in Horses
by Francisco Medina-Bautista, Irene Nocera, Antonia Sánchez de Medina, Chiara Di Franco, Angela Briganti, Juan Morgaz and María del Mar Granados
Animals 2025, 15(15), 2264; https://doi.org/10.3390/ani15152264 (registering DOI) - 1 Aug 2025
Abstract
The objective of this study was to evaluate the feasibility and efficacy of the ultrasound-guided thoracolumbar erector spinae plane (TL-ESP) block in standing horses. A total of 24 injections (n = 12) were performed at the L1 level using either 0.1 mL/kg [...] Read more.
The objective of this study was to evaluate the feasibility and efficacy of the ultrasound-guided thoracolumbar erector spinae plane (TL-ESP) block in standing horses. A total of 24 injections (n = 12) were performed at the L1 level using either 0.1 mL/kg of saline solution (SS group) or 2% lidocaine (LID group). The block feasibility was assessed based on needle visualization and injection time, while efficacy was evaluated through craniocaudal and dorsoventral (DV) spread using the pinprick technique over 270 min. Desensitization was observed at least once in 100% of horses in the LID group and in 75% in the SS group (p = 0.001). However, in the SS group, desensitization was primarily limited to the Th18 metamer at the 2 cm DV position, with a shorter duration compared to the LID group. The block onset occurred at 22.5 (11.25–60) min in the LID group and at 5 (5–30) min in the SS group (p = 0.069). The number of affected metamers was significantly higher in the LID group (2 [1,2,3]) compared to the SS group (1 [1–2.25], p = 0.014). At the 2 cm DV point, the end of the block effect occurred at 135 (120–210) min in the LID group and at 60 (3.75–60) min in the SS group (p = 0.001). Needle visualization was excellent in 95.8% of cases, and the mean injection time was 2.5 (2–3) min. These findings confirm that the TL-ESP block is a feasible technique in standing horses. However, its effect is predominantly localized to dorsal dermatomes with a limited ventral spread. Future studies evaluating larger volumes and multiple injection sites are warranted to enhance its clinical applicability. Full article
29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 (registering DOI) - 1 Aug 2025
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

15 pages, 3792 KiB  
Article
Polarization Characteristics of a Metasurface with a Single via and a Single Lumped Resistor for Harvesting RF Energy
by Erik Madyo Putro, Satoshi Yagitani, Tomohiko Imachi and Mitsunori Ozaki
Appl. Sci. 2025, 15(15), 8561; https://doi.org/10.3390/app15158561 (registering DOI) - 1 Aug 2025
Abstract
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting [...] Read more.
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting RF (radio frequency) energy. FR4 dielectric is used as a substrate supported by a metal ground plane. Polarization-dependent properties with specific surface current patterns and voltage dip are obtained when simulating under normal incidence of a plane wave. This characteristic results from changes in surface current conditions when the polarization angle is varied. A voltage dip appears at a specific polarization angle when the surface current pattern is symmetrical. This condition occurs when the position of the lumped resistor from the center of the patch is perpendicular to the linearly polarized incident electric field. A couple of 10 × 10 arrays with different resistor positions are fabricated and tested. The experimental results are in good agreement with the simulated results. The proposed design demonstrates a symmetric unit cell structure with one via and a resistor that exhibits polarization-dependent behavior for linear polarization. An asymmetric patch design is explored through both simulation and measurement to mitigate polarization dependence by suppressing the dip behavior, albeit at the expense of reduced absorption efficiency. This study provides a complete polarization analysis for both symmetric and asymmetric patch metasurfaces with a single via and a single lumped resistor, and introduces a predictive relation between the position of the resistor relative to the center of the patch and the resulting voltage dip behavior. Full article
(This article belongs to the Special Issue Electromagnetic Waves: Applications and Challenges)
Show Figures

Figure 1

21 pages, 1306 KiB  
Article
Dual Quaternion-Based Forward and Inverse Kinematics for Two-Dimensional Gait Analysis
by Rodolfo Vergara-Hernandez, Juan-Carlos Gonzalez-Islas, Omar-Arturo Dominguez-Ramirez, Esteban Rueda-Soriano and Ricardo Serrano-Chavez
J. Funct. Morphol. Kinesiol. 2025, 10(3), 298; https://doi.org/10.3390/jfmk10030298 (registering DOI) - 1 Aug 2025
Abstract
Background: Gait kinematics address the analysis of joint angles and segment movements during walking. Although there is work in the literature to solve the problems of forward (FK) and inverse kinematics (IK), there are still problems related to the accuracy of the estimation [...] Read more.
Background: Gait kinematics address the analysis of joint angles and segment movements during walking. Although there is work in the literature to solve the problems of forward (FK) and inverse kinematics (IK), there are still problems related to the accuracy of the estimation of Cartesian and joint variables, singularities, and modeling complexity on gait analysis approaches. Objective: In this work, we propose a framework for two-dimensional gait analysis addressing the singularities in the estimation of the joint variables using quaternion-based kinematic modeling. Methods: To solve the forward and inverse kinematics problems we use the dual quaternions’ composition and Damped Least Square (DLS) Jacobian method, respectively. We assess the performance of the proposed methods with three gait patterns including normal, toe-walking, and heel-walking using the RMSE value in both Cartesian and joint spaces. Results: The main results demonstrate that the forward and inverse kinematics methods are capable of calculating the posture and the joint angles of the three-DoF kinematic chain representing a lower limb. Conclusions: This framework could be extended for modeling the full or partial human body as a kinematic chain with more degrees of freedom and multiple end-effectors. Finally, these methods are useful for both diagnostic disease and performance evaluation in clinical gait analysis environments. Full article
Show Figures

Figure 1

14 pages, 2795 KiB  
Article
Obtaining Rotational Stiffness of Wind Turbine Foundation from Acceleration and Wind Speed SCADA Data
by Jiazhi Dai, Mario Rotea and Nasser Kehtarnavaz
Sensors 2025, 25(15), 4756; https://doi.org/10.3390/s25154756 (registering DOI) - 1 Aug 2025
Abstract
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus [...] Read more.
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus lowering the use of moment and tilt sensors that are currently being used for obtaining foundation stiffness. First, a convolutional neural network model is applied to map acceleration and wind speed data within a moving window to corresponding moment and tilt values. Rotational stiffness of the foundation is then estimated by fitting a line in the moment-tilt plane. The results obtained indicate that such a mapping model can provide stiffness values that are within 7% of ground truth stiffness values on average. Second, the developed mapping model is re-trained by using synthetic acceleration and wind speed data that are generated by an autoencoder generative AI network. The results obtained indicate that although the exact amount of stiffness drop cannot be determined, the drops themselves can be detected. This mapping model can be used not only to lower the cost associated with obtaining foundation rotational stiffness but also to sound an alarm when a foundation starts deteriorating. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
Show Figures

Figure 1

18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

19 pages, 1771 KiB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

28 pages, 3834 KiB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 (registering DOI) - 1 Aug 2025
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

25 pages, 11545 KiB  
Article
Workpiece Coordinate System Measurement for a Robotic Timber Joinery Workflow
by Francisco Quitral-Zapata, Rodrigo García-Alvarado, Alejandro Martínez-Rocamora and Luis Felipe González-Böhme
Buildings 2025, 15(15), 2712; https://doi.org/10.3390/buildings15152712 (registering DOI) - 31 Jul 2025
Abstract
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an [...] Read more.
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an eye-in-hand configuration on a KUKA industrial robot. The proposed algorithm applies a geometric method that strategically crops the point cloud and fits planes to the workpiece surfaces to define a reference frame, calculate the corresponding transformation between coordinate systems, and measure the cross-section of the workpiece. This enables reliable toolpath generation by dynamically updating WCS and effectively accommodating real-world geometric deviations in timber components. The workflow includes camera-to-robot calibration, point cloud acquisition, robust detection of workpiece features, and precise alignment of the WCS. Experimental validation confirms that the proposed method is efficient and improves milling accuracy. By dynamically identifying the workpiece geometry, the system successfully addresses challenges posed by irregular timber shapes, resulting in higher accuracy for timber joints. This method contributes to advanced manufacturing strategies in robotic timber construction and supports the processing of diverse workpiece geometries, with potential applications in civil engineering for building construction through the precise fabrication of structural timber components. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

17 pages, 2389 KiB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 (registering DOI) - 31 Jul 2025
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 (registering DOI) - 31 Jul 2025
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

30 pages, 7472 KiB  
Article
Small but Mighty: A Lightweight Feature Enhancement Strategy for LiDAR Odometry in Challenging Environments
by Jiaping Chen, Kebin Jia and Zhihao Wei
Remote Sens. 2025, 17(15), 2656; https://doi.org/10.3390/rs17152656 (registering DOI) - 31 Jul 2025
Abstract
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by [...] Read more.
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by reinforcing high-quality features throughout the optimization process. For non-ground features, the method employs statistical geometric analysis to identify stable points and incorporates a contribution-weighted optimization scheme to strengthen their impact in point-to-plane and point-to-line constraints. In parallel, for ground features, locally stable planar surfaces are fitted to replace discrete point correspondences, enabling more consistent point-to-plane constraint formulation during ground registration. Experimental results on the KITTI and M2DGR datasets demonstrated that the proposed method significantly improves localization accuracy and system robustness, while preserving real-time performance with minimal computational overhead. The performance gains were particularly notable in scenarios dominated by unstructured environments. Full article
(This article belongs to the Special Issue Laser Scanning in Environmental and Engineering Applications)
Show Figures

Figure 1

21 pages, 10439 KiB  
Article
Camera-Based Vital Sign Estimation Techniques and Mobile App Development
by Tae Wuk Bae, Young Choon Kim, In Ho Sohng and Kee Koo Kwon
Appl. Sci. 2025, 15(15), 8509; https://doi.org/10.3390/app15158509 (registering DOI) - 31 Jul 2025
Viewed by 38
Abstract
In this paper, we propose noncontact heart rate (HR), oxygen saturation (SpO2), and respiratory rate (RR) detection methods using a smartphone camera. HR frequency is detected through filtering after obtaining a remote PPG (rPPG) signal and its power spectral density (PSD) is detected [...] Read more.
In this paper, we propose noncontact heart rate (HR), oxygen saturation (SpO2), and respiratory rate (RR) detection methods using a smartphone camera. HR frequency is detected through filtering after obtaining a remote PPG (rPPG) signal and its power spectral density (PSD) is detected using color difference signal amplification and the plane-orthogonal-to-the-skin method. Additionally, the SpO2 is detected using the HR frequency and the absorption ratio of the G and B color channels based on oxyhemoglobin absorption and reflectance theory. After this, the respiratory frequency is detected using the PSD of rPPG through respiratory frequency band filtering. For the image sequences recorded under various imaging conditions, the proposed method demonstrated superior HR detection accuracy compared to existing methods. The confidence intervals for HR and SpO2 detection were analyzed using Bland–Altman plots. Furthermore, the proposed RR detection method was also verified to be reliable. Full article
Show Figures

Figure 1

Back to TopTop