Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = plane strain conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5814 KiB  
Article
The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film
by Longbin Liu, Mengyang Fan and Xingfu Cui
Appl. Sci. 2025, 15(13), 7596; https://doi.org/10.3390/app15137596 - 7 Jul 2025
Viewed by 225
Abstract
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which [...] Read more.
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which have gradually become a new hot research topic. However, flexible wings rely on inflation pressure to maintain the shape and rigidity of the skin film, and the inflation pressure has a significant influence on the strain deformation and wing bearing characteristics of flexible wing skin film. Here, based on the flexible mechanics theory and balance principle of flexible inflatable film, a theoretical model of structural deformation and internal inflation pressure was constructed, and finite element simulation analysis under different internal inflation pressure conditions was carried out as well. The results demonstrate that the biaxial deformation of flexible wing skin film is closely related to internal inflation pressure, local size, configuration, and film material properties. However, strain deformation along the wingspan direction is quite distinguishing, skin films work under the condition of biaxial plane deformation, and the strain deformation of the spanning direction is obviously higher than that of the chord direction, which all increases with internal inflation pressure. Therefore, it is necessary to pay more attention to bearing strain deformation characteristics to meet the bearing stiffness requirements, which could effectively provide a theoretical reference for the structural optimization design and inflation scheme setting of flexible inflatable wings. Full article
Show Figures

Figure 1

22 pages, 9767 KiB  
Article
Freeze–Thaw-Induced Degradation Mechanisms and Slope Stability of Filled Fractured Rock Masses in Cold Region Open-Pit Mines
by Jun Hou, Penghai Zhang, Ning Gao, Wanni Yan and Qinglei Yu
Appl. Sci. 2025, 15(13), 7429; https://doi.org/10.3390/app15137429 - 2 Jul 2025
Viewed by 238
Abstract
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory [...] Read more.
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory FT tests are typically based on uniform temperature settings, which fail to reflect the actual thermal variations at different burial depths, thereby limiting the accuracy of mechanical parameter acquisition. Taking the Wushan open-pit mine as the engineering background, this study establishes a temperature–depth relationship, defines multiple thermal intervals, and conducts direct shear tests on structural plane filling materials under various FT conditions to characterize the evolution of cohesion and internal friction angle. Results from rock mass testing and numerical simulation demonstrate that shear strength parameters exhibit an exponential decline with increasing FT cycles and decreasing burial depth, with the filling material playing a dominant role in the initial stage of degradation. Furthermore, a two-dimensional fracture network model of the rock mass was constructed, and the representative elementary volume (REV) was determined through the evolution of equivalent plastic strain. Based on this, spatial assignment of slope strength was performed, followed by stability analysis. Based on regression fitting using 0–25 FT cycles, regression model predictions indicate that when the number of FT cycles exceeds 42, the slope safety factor drops below 1.0, entering a critical instability state. This research successfully establishes a spatial field of mechanical parameters and evaluates slope stability, providing a theoretical foundation and parameter support for the long-term service evaluation and stability assessment of cold-region open-pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

12 pages, 3074 KiB  
Article
Formability Limits in Square Tubes and L-Section Profiles
by Inês M. Almeida, João P. G. Magrinho and Maria Beatriz Silva
Materials 2025, 18(12), 2852; https://doi.org/10.3390/ma18122852 - 17 Jun 2025
Viewed by 210
Abstract
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present [...] Read more.
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present unique deformation and fracture behaviours that require specific analysis. To address this gap, this research establishes a novel methodology combining digital image correlation (DIC) with a time-dependent approach and precise thickness measurements, enabling accurate strain measurements essential to the onset of necking and fracture strain identification. Two experimental tests under different forming conditions allowed capturing a distinct range of strain paths leading to failure. This approach allowed the determination of the forming limit points associated with necking and the fracture forming lines associated with crack opening by tension (mode I) and by in-plane shear (mode II). The findings highlight the strong influence of geometry on the fracture mechanisms and provide valuable data for optimizing tube-forming processes for square tubes and L-section profiles, ultimately enhancing the design and performance of lightweight structural components. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Impact of Lubrication on Shear Deformation During Asymmetrical Rolling: A Viscoplastic Analysis of Slip System Activity Using an Affine Linearization Scheme
by I Putu Widiantara, Siti Fatimah, Warda Bahanan, Jee-Hyun Kang and Young Gun Ko
Lubricants 2025, 13(6), 265; https://doi.org/10.3390/lubricants13060265 - 15 Jun 2025
Viewed by 378
Abstract
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. [...] Read more.
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. In this study, we investigated how lubrication affects slip system activity during asymmetrical rolling, using viscoplastic modeling of BCC ferritic steel. Two conditions—lubricated and non-lubricated samples—were examined under asymmetrical rolling. Slip system activity was inferred from the rotation axes between pairs of orientations separated by low-angle grain boundaries, based on the assumption that such boundaries represent the simplest form of orientation change. A Viscoplastic Self-Consistent (VPSC) model employing an affine linearization scheme was used. This proved sufficient for evaluating slip system activity in BCC polycrystalline metals undergoing early-stage plastic deformation involving either plane strain or combined plane strain and shear. The results demonstrated that lubrication had a limiting effect by reducing the penetration of shear deformation through the thickness of the sample. Understanding this effect could enable the optimization of lubrication strategies—not only to minimize defects such as bending, but also to achieve microstructural characteristics favorable for industrial applications. Full article
Show Figures

Figure 1

26 pages, 9374 KiB  
Review
Right Ventricular Strain by Echocardiography: Current Clinical Applications and Future Directions for Mechanics Assessment of the Forgotten Ventricle
by Mahmoud Abdelnabi, Ramzi Ibrahim, Hoang Nhat Pham, Bobbi Jo Heon, George Bcharah, Girish Pathangey, Milagros Pereyra Pietri, Juan M. Farina, Ian C. Chang, Reza Arsanjani and Chadi Ayoub
J. Pers. Med. 2025, 15(6), 224; https://doi.org/10.3390/jpm15060224 - 30 May 2025
Viewed by 1291
Abstract
Myocardial deformation imaging has emerged as a valuable clinical tool for assessing right ventricular (RV) systolic function, providing additional diagnostic and prognostic insights compared to traditional indices of RV function. Two-dimensional speckle-tracking echocardiography is currently the standardized method of choice for measuring RV [...] Read more.
Myocardial deformation imaging has emerged as a valuable clinical tool for assessing right ventricular (RV) systolic function, providing additional diagnostic and prognostic insights compared to traditional indices of RV function. Two-dimensional speckle-tracking echocardiography is currently the standardized method of choice for measuring RV longitudinal strain (RVLS) in clinical practice. RVLS provides a more sensitive indicator of subtle myocardial dysfunction than conventional parameters for RV function assessment (i.e., tricuspid annular plane systolic excursion, tissue Doppler systolic velocity, fractional area change, or RV ejection fraction), with utility for the risk stratification and surveillance of conditions affecting the right heart. However, accurate interpretation of RVLS requires a comprehensive understanding of RV mechanics, pathology, and loading conditions across various cardiovascular conditions, as well as the effects of image quality and technical aspects of image acquisition and tracking in RV strain measurements. This review provides an updated overview of current practical guidelines for RV strain analysis, current clinical applications, and future directions for its potential use in clinical practice. Full article
(This article belongs to the Special Issue New Advances in Techniques and Personalized Medicine in Cardiology)
Show Figures

Figure 1

20 pages, 48436 KiB  
Article
Characterising Through-Thickness Shear Anisotropy Using the Double-Bridge Shear Test and Finite Element Model Updating
by Bojan Starman, Bin Chen, Andraž Maček, Yi Zhang, Miroslav Halilovič and Sam Coppieters
Materials 2025, 18(10), 2220; https://doi.org/10.3390/ma18102220 - 11 May 2025
Viewed by 401
Abstract
The accuracy of numerical predictions in sheet metal processes involving multiaxial stress–strain states (e.g., blanking, riveting, and incremental forming) heavily depends on the characterisation of plastic anisotropy under multiaxial loading conditions. A fully calibrated 3D plastic anisotropy model is essential for this purpose. [...] Read more.
The accuracy of numerical predictions in sheet metal processes involving multiaxial stress–strain states (e.g., blanking, riveting, and incremental forming) heavily depends on the characterisation of plastic anisotropy under multiaxial loading conditions. A fully calibrated 3D plastic anisotropy model is essential for this purpose. While in-plane material behaviour can be conventionally characterised through uniaxial and equi-biaxial tensile tests, calibrating out-of-plane material behaviour remains a significant challenge. This behaviour, governed by out-of-plane shear stress and associated material parameters, is typically described by out-of-plane shear yielding. These parameters are notoriously difficult to determine, leading researchers to frequently assume isotropic behaviour or identical shear parameters for in-plane and out-of-plane responses. Although advanced calibrations may utilise crystal plasticity modelling, there remains a critical need for macro-mechanical characterisation methods. This paper presents an out-of-plane shear testing and material characterisation procedure based on full-field strain measurements using digital image correlation (DIC). Strains within the shear zone are measured via DIC and employed in the Finite Element Model Updating (FEMU) to identify out-of-plane shear parameters of a 2.42 mm thick, cold-rolled AW5754-H22 aluminium alloy sheet, using the Yld2004-18p yield criterion. Given that the characteristic strain response at this scale may be influenced by local crystal structure behaviour on the surface, this paper evaluates the feasibility of such measurements. Finally, to test the validity of the full-field-based approach, the FEMU-identified parameters are compared against results obtained through a classical optimisation procedure based on force-elongation measurements from the shear zone. Full article
Show Figures

Figure 1

17 pages, 1026 KiB  
Article
Elevated Macrophage Migration Inhibitory Factor 1 Is Associated with Left and Right Ventricular Systolic Dysfunction in Heart Failure with Reduced Ejection Fraction
by Timea Magdolna Szabo, Mihály Vass, Márta Germán-Salló, Attila Frigy and Előd Ernő Nagy
Biomedicines 2025, 13(5), 1087; https://doi.org/10.3390/biomedicines13051087 - 30 Apr 2025
Viewed by 634
Abstract
Background/Objectives: Low-grade systemic inflammation, characteristic of heart failure (HF), is a nonspecific inflammatory syndrome that affects the entire body. Macrophage migration inhibitory factor 1 (MIF-1) is a pro-inflammatory cytokine, a key mediator of the innate immune response, and may serve as a [...] Read more.
Background/Objectives: Low-grade systemic inflammation, characteristic of heart failure (HF), is a nonspecific inflammatory syndrome that affects the entire body. Macrophage migration inhibitory factor 1 (MIF-1) is a pro-inflammatory cytokine, a key mediator of the innate immune response, and may serve as a potential biomarker of monocyte homing and activation in HF with reduced and mildly reduced ejection fraction (HFrEF, HFmrEF). Methods: We evaluated 70 hemodynamically stable patients with left ventricular EF (LVEF) < 50% by means of echocardiography and blood sampling. Results: We report significant correlations between MIF-1, LVEF (r = −0.33, p = 0.005), LV global longitudinal strain (LVGLS, r = 0.41, p = 0.0004), and tricuspid annular plane systolic excursion (TAPSE, r = −0.37, p = 0.001). MIF-1 levels in HFrEF patients were relatively higher, but not significantly different from those observed in HFmrEF. MIF-1 showed significant associations with TAPSE to systolic pulmonary artery pressure ratio (TAPSE/sPAP, p < 0.0001). Also, patients with TAPSE/sPAP < 0.40 mm/mmHg had significantly higher levels of MIF-1 (p = 0.009). Moreover, ischemic cardiomyopathy (ICM) was more frequent in patients with MIF-1 concentrations above 520 pg/mL (57.1% MIF-1hi vs. 28.6% MIF-1lo, p = 0.029). In terms of congestion, MIF-1 showed significant associations with the presence of peripheral edema (p = 0.007), but none was found with self-reported dyspnea (p = 0.307) and New York Heart Association (NYHA) class (p = 0.486). Also, no relationship was reported with N-terminal pro-B-type natriuretic peptide concentrations (NT-proBNP, r = 0.14, p = 0.263). However, the six-minute walk distance was greater in individuals in the MIF-1lo group when compared to those in the MIF-1hi group (404.0 ± 127.4 vs. 324.8 ± 124.1 m, p = 0.010). Conclusions: Beyond identifying inflammatory biomarkers related to disease severity, linking MIF-1 to various pathophysiological mechanisms may highlight the active involvement of the monocyte-macrophage system in HF. This system holds notable significance in congestion-related conditions, acting as a major source of reactive oxygen species that perpetuate inflammation. Full article
Show Figures

Figure 1

20 pages, 8770 KiB  
Article
Failure and Energy Evolution Characteristics of Saturated Natural Defective Material Under Different Confining Pressures
by Zhihao Gao, Shihao Guo, Xiaoyong Yang, Shanchao Hu, Junhong Huang, Yafei Cheng, Dawang Yin and Jinhao Dou
Materials 2025, 18(9), 2027; https://doi.org/10.3390/ma18092027 - 29 Apr 2025
Viewed by 439
Abstract
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation [...] Read more.
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation and failure of defective brittle materials are essentially the result of the accumulation and dissipation of energy. Studying the energy evolution of defective brittle materials under load is more conducive to reflecting the intrinsic characteristics of strength changes and overall failure of brittle materials under external loading. Natural defective brittle rock materials were firstly water saturated and triaxial compression tests were performed to determine the mechanical properties of water-saturated materials. The energy evolution patterns of water-saturated materials under varying confining pressures were also obtained. Using the discrete element method, the macro- and micro-failure characteristics of water-saturated materials were investigated, revealing the mesoscopic mechanisms of deformation and failure evolution in these materials. The results indicate that confining pressure significantly enhances the peak compressive strength and elastic modulus of water-saturated defective materials. When the confining pressure increased from 0 MPa to 20 MPa, the peak strength and elastic modulus of the water-saturated materials increased by 126.8% and 91.9%, respectively. Confining pressure restricts the radial deformation of water-saturated materials and dominates the failure mode. As confining pressure increases, the failure mode transitions from tensile splitting (at 0 MPa confining pressure) to shear failure (at confining pressures ≥ 10 MPa), with the failure plane angle gradually decreasing as confining pressure rises. Confining pressure significantly alters the energy storage–release mechanism of water-saturated defective brittle materials. At peak load, the total energy, elastic energy, and dissipated energy increased by 347%, 321%, and 1028%, respectively. The ratio of elastic energy storage to peak strain ratio shows a positive correlation, and the elastic storage ratio of water-saturated defective brittle materials under confining pressure is always higher than that without confining pressure. When the strain ratio exceeds 0.94, a negative correlation between confining pressure and the rate of elastic storage ratio is observed. From the perspective of mesoscopic fracture evolution in water-saturated defective brittle materials, the crack propagation path shifts from the periphery to the center of the material, and the fracture angle decreases linearly from 89° to 58° as confining pressure increases. The dominant direction of crack development is concentrated within the 45–135° range. The findings elucidate the mechanisms by which water saturation and confining pressure influence the strength degradation of natural defective brittle materials from both mesoscopic and energy perspectives, providing theoretical support for the stability control of related engineering structures. Full article
Show Figures

Figure 1

16 pages, 3791 KiB  
Article
Effect of Key Parameters on Ploughing Force Performance of Planing-Type Anti-Climbers
by Zhuyao Li, Jiyou Fei, Dongxue Song, Hong He, Chang Liu and Chong Zhang
Machines 2025, 13(5), 353; https://doi.org/10.3390/machines13050353 - 24 Apr 2025
Viewed by 312
Abstract
This paper proposes a mathematical model-based analytical approach to address the cutting force prediction and performance optimization challenges in planing-type anti-climbers for high-speed train passive safety systems. The method overcomes the reliance on experimental calibration inherent to conventional approaches, enabling the efficient quantitative [...] Read more.
This paper proposes a mathematical model-based analytical approach to address the cutting force prediction and performance optimization challenges in planing-type anti-climbers for high-speed train passive safety systems. The method overcomes the reliance on experimental calibration inherent to conventional approaches, enabling the efficient quantitative evaluation of anti-climber cutting performance. By equivalently modeling the collision energy dissipation process as an orthogonal cutting model, a theoretical framework integrating material dynamic response characteristics and impact boundary conditions was developed for direct cutting force prediction without experimental calibration. Finite element modeling implemented on the ABAQUS platform was employed for simulation analysis, supplemented by dynamic impact tests for validation. The results demonstrate that the model achieves ≤15% relative error compared with the simulation data and ≤5% deviation from the experimental measurements, confirming its engineering applicability. Sensitivity analysis reveals that cutting depth exhibits the most pronounced positive correlation with cutting force, while increased tool rake angle reduces cutting force. The dynamic equilibrium between thermal softening effects and strain rate strengthening leads to cutting force reduction with elevated cutting speed. This research establishes theoretical and technical foundations for the intelligent optimization of passive safety systems in rail transit equipment. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

12 pages, 5429 KiB  
Article
Evaluation of Load and Stress Distribution for a Novel Design of Maxillary Protraction Facemask by Finite Element Analysis
by Ghassan Bahir Abdulkareem, Martyn T. Cobourne and Mushriq Abid
J. Clin. Med. 2025, 14(8), 2676; https://doi.org/10.3390/jcm14082676 - 14 Apr 2025
Viewed by 463
Abstract
Background/Objectives: Protraction facemasks are commonly used to treat Class III malocclusion in growing patients. Personalized facemasks designed using 3D modeling software and based on individual 3D face images are now available. This study aimed to assess the mechanical properties of three novel designs [...] Read more.
Background/Objectives: Protraction facemasks are commonly used to treat Class III malocclusion in growing patients. Personalized facemasks designed using 3D modeling software and based on individual 3D face images are now available. This study aimed to assess the mechanical properties of three novel designs of Petit-type facemask appliances through three-dimensional Finite Element Analysis (FEA). Methods: Three novel designs of the facemask were modeled by Solidworks 3D CAD (2023): anatomic, V-shape, and arc-shape. FEA was performed by Ansys 2021 (R2) software. The elements’ sizes, shapes, and numbers were identified, and the material property was set on Acrylonitrile butadiene styrene copolymer (ABS) plastic. The support and loading conditions of two different intensities of load, 7.8 and 9.8 N, respectively, were applied in three angulations to the occlusal plane: 0°, 30°, and 50°. Stress, strain, and total deformation results were obtained. Results: The minimum stress was reported with the anatomic design at a 30° angulation, whereas the maximum value was reported in the arc-shape design at 50°; however, there was no significant difference among the three designs. The von Mises yield criterion showed that the overall stresses were distributed on the larger areas of the facemask structure at 30° angulation for all designs. The stresses induced in all facemask appliance designs did not cause permanent deformation. Conclusions: Anatomic design has better mechanical behavour than the V-shape or arc shape design. Downward inclination of 30° to the occlusal plane induces less stress. These findings support the use of customized anatomic facemasks for the effective and efficient treatment of Class III malocclusions in growing patients, potentially improving clinical outcomes and patient comfort. Further research, particularly clinical trials, is needed to validate the results of the present study. Full article
(This article belongs to the Special Issue Latest Advances in Orthodontics)
Show Figures

Figure 1

15 pages, 14895 KiB  
Article
Regenerated Cellulose Films Coated with Waterborne Polyurethane with Enhanced Mechanical Properties
by Renxiang Xiong and Jinping Zhou
Polymers 2025, 17(7), 890; https://doi.org/10.3390/polym17070890 - 26 Mar 2025
Viewed by 852
Abstract
Regenerated cellulose (RC) films with abundant sources and low processing costs are considered to be excellent biodegradable and recycled packaging materials. However, there is still a problem to be solved: the poor strength of RC films in the wet state. Polyurethane (PU) possesses [...] Read more.
Regenerated cellulose (RC) films with abundant sources and low processing costs are considered to be excellent biodegradable and recycled packaging materials. However, there is still a problem to be solved: the poor strength of RC films in the wet state. Polyurethane (PU) possesses excellent mechanical properties, biocompatibility and biodegradability. In this work, a PU coating is successfully introduced on the RC film surface via a facile surface engineering strategy, followed by plane hot-pressing process, and the RC@PU films are obtained. Notably, under wet conditions, RC@PU films show outstanding mechanical properties (fracture stress of 22.5 MPa, fracture strain of 75.9%, toughness of 10.6 MJ/m3), which are greater than those of the pure RC films (18.9 MPa, 56.5%, 6.9 MJ/m3). In addition, RC@PU films play an important role in anti-water evaporation tests. Moreover, RC@PU films exhibit excellent biodegradability, which can be completely degraded in a natural environment in about 70 days. This work provides a simple and feasible surface engineering strategy for developing RC films with excellent wet strength and biodegradability. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 11798 KiB  
Article
Strain Response Analysis and Experimental Study of the Cross-Fault Buried Pipelines
by Yuan Li, Shaofeng Chen, Yu Hou, Wangqiang Xiao, Ling Fan, Zhiqin Cai, Jiayong Wu and Yanbin Li
Symmetry 2025, 17(4), 501; https://doi.org/10.3390/sym17040501 - 26 Mar 2025
Viewed by 414
Abstract
Monitoring and early warning systems for cross-fault buried pipelines are critical measures to ensure the safe operation of oil and gas pipelines. Accurately acquiring pipeline strain response serves as the fundamental basis for achieving this objective. This study proposes a comprehensive analytical methodology [...] Read more.
Monitoring and early warning systems for cross-fault buried pipelines are critical measures to ensure the safe operation of oil and gas pipelines. Accurately acquiring pipeline strain response serves as the fundamental basis for achieving this objective. This study proposes a comprehensive analytical methodology combining finite element analysis (FEA) and experimental verification to investigate strain responses in cross-fault buried pipelines. Firstly, a finite element modeling approach with equivalent-spring boundaries was established for cross-fault pipeline systems. Secondly, based on the similarity ratio theory, an experimental platform was designed using Φ89 mm X42 steel pipes and in situ soil materials. Subsequently, the finite element model of the experimental conditions was constructed using the proposed FEA. Guided by simulation results, strain sensors were strategically deployed on test pipelines to capture strain response data under mechanical loading. Finally, prototype-scale strain responses were obtained through similarity ratio inverse modeling, and a comparative analysis with full-scale FEA results was performed. The results demonstrate that strike-slip fault displacement induces characteristic “S”-shaped antisymmetric deformation in pipelines, with maximum strain concentrations occurring near the fault plane. Both the magnitude and location of maximum strain derived from similarity ratio inverse modeling show close agreement with FEA predictions, with relative discrepancies within 18%. This consistency validates the reliability of the experimental design and confirms the accuracy of the finite element model. The proposed methodology provides valuable technical guidance for implementing strain-based monitoring and early warning systems in cross-fault buried pipeline applications. Full article
(This article belongs to the Special Issue Advances in Design and Analysis of Asymmetric Structures)
Show Figures

Figure 1

33 pages, 669 KiB  
Article
On Anisothermal Electromagnetic Elastic Deformations in Flight in Fair Weather and Lightning Storms
by Luiz M. B. C. Campos and Manuel J. S. Silva
Appl. Sci. 2025, 15(7), 3605; https://doi.org/10.3390/app15073605 - 25 Mar 2025
Viewed by 244
Abstract
The thermomechanical effects on aircraft structures in flight are compared between fair weather and a lightning storm based on a model problem, namely, equations of anisothermal unsteady piezoelectromagnetism are solved in the particular case of a parallel-sided slab assuming (i) steady conditions and [...] Read more.
The thermomechanical effects on aircraft structures in flight are compared between fair weather and a lightning storm based on a model problem, namely, equations of anisothermal unsteady piezoelectromagnetism are solved in the particular case of a parallel-sided slab assuming (i) steady conditions and spatial dependence only on the coordinate orthogonal to the slab; (ii) the displacement vector orthogonal to the slab; (iii) the magnetic field orthogonal to the electric field, with both in the plane parallel to the sides of the slab. The exact analytical solution is obtained in the linear approximation for the displacement vector, electric and magnetic fields and temperature as function of the coordinate normal to the slab, taking into account heating by the Joule effect of Ohmic electric currents and Fourier thermal conduction. These specify the strain and stress tensors, the electric current and the heat flux. The material properties involved include the mass density, dielectric permittivity, magnetic permeability, elastic stiffness tensor, electromagnetic coupling and thermal stress tensors, pyroelectric and pyromagnetic vectors and piezoelectric and piezomagnetic tensors. The analytic results of the theory are simplified assuming (i) isotropic material properties; (ii) a steady state independent of time. The profiles as a function of the coordinate normal to the slab of the electric and magnetic fields, temperature and heat flux and displacement, strain and stress are obtained in these conditions. Full article
(This article belongs to the Special Issue Novel Applications of Electromagnetic Energy Systems)
Show Figures

Figure 1

17 pages, 4908 KiB  
Article
The Enhanced Measurement Method Based on Fiber Bragg Grating Sensor for Structural Health Monitoring
by Shengtao Niu and Ru Li
Micromachines 2025, 16(4), 368; https://doi.org/10.3390/mi16040368 - 24 Mar 2025
Viewed by 675
Abstract
The effective measurement method plays a vital role in the structural health monitoring (SHM) field, which provides accurate and real-time information concerning structural conditions and performance. The innovative measurement approach based on strain sensors, referred to as the inverse finite element method (iFEM), [...] Read more.
The effective measurement method plays a vital role in the structural health monitoring (SHM) field, which provides accurate and real-time information concerning structural conditions and performance. The innovative measurement approach based on strain sensors, referred to as the inverse finite element method (iFEM), has been considered the most promising and versatile technology for meeting the requirements of the SHM system. However, the existing iFEM for shape sensing of thick plate structures has the drawback that the transverse shear effect makes no contribution to the three-dimensional deformation of thick plate structures. Therefore, this study proposed an enhanced inverse finite element method (iFEM) based on single-surface fiber Bragg grating strain sensors for reconstructing thick plate structures coupled with an analytical formulation. The method characterized the explicit relationship between transverse shear and bending displacement field on the mid-plane, which presents the sixth-order differential equation based on a variational approach. The three-dimensional deformation field can be obtained along the thickness direction, expanding the SHM application of iFEM for composite structures based on strain measurement. By performing shape sensing analysis of the thick plate model, the exactness and applicability of the present method are numerically and experimentally validated for different loading cases. Full article
(This article belongs to the Topic Distributed Optical Fiber Sensors)
Show Figures

Figure 1

25 pages, 16804 KiB  
Article
Development and Demonstration of a Novel Test Bench for the Experimental Validation of Fuselage Stiffened Panel Simulations
by Panagiotis D. Kordas, Konstantinos T. Fotopoulos and George N. Lampeas
Aerospace 2025, 12(3), 263; https://doi.org/10.3390/aerospace12030263 - 20 Mar 2025
Viewed by 496
Abstract
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. [...] Read more.
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. The experimental arrangement was specifically designed, assembled, and instrumented to have multi-axial loading capabilities. The investigated load cases comprised uniaxial in-plane compression, lateral distributed pressure, and their combination. The introduction of pressure was enabled by inflatable airbags, and compression was applied up to the onset of local skin buckling. Calibration of the load introduction and inspection equipment was performed in multiple steps to acquire accurate and representative measurements. Data were recorded by external sensors mounted on a hydraulic actuator and an optical Digital Image Correlation (DIC) system. A numerical simulation of the fuselage panel and the test rig was developed, and a validation study was conducted. In the Finite Element (FE) model, several of the experimental configuration’s supporting elements and their connections to the specimen were integrated as constraints and boundary conditions. Data procured from the tests were correlated to the simulation’s predictions, presenting low errors in most displacement/strain distributions. The results show that the proposed test rig concept is suitable for stiffened panel level testing and could be used for future studies on similar aeronautical components. Full article
Show Figures

Figure 1

Back to TopTop