The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film
Abstract
1. Introduction
2. Multi-Air Beam Flexible Inflatable Wing Modeling
3. Inflation Deformation Modeling and Bearing Deformation Simulation
3.1. Inflatable Flexible Deformation Modeling
3.2. Finite Element Simulation
4. Results and Discussion
4.1. Analysis of the Strain Deformation of Flexible Wing Film
4.2. Analysis of Strain Deformation Along the Different Characteristic Line Positions of the Flexible Wing Film
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Node No. | Inflation Pressure 1500 Pa | Inflation Pressure 2000 Pa | Inflation Pressure 2500 Pa | Pressure 2000 Pa Increment | Pressure 2500 Pa Increment |
---|---|---|---|---|---|---|
1 | 358 | 6.328 × 10−4 | 6.322 × 10−4 | 6.342 × 10−4 | −6.410 × 10−7 | 1.328 × 10−6 |
2 | 360 | 5.245 × 10−4 | 5.164 × 10−4 | 5.146 × 10−4 | −8.149 × 10−6 | −9.949 × 10−6 |
3 | 362 | 4.981 × 10−4 | 5.118 × 10−4 | 5.309 × 10−4 | 1.370 × 10−5 | 3.277 × 10−5 |
4 | 364 | 4.949 × 10−4 | 5.122 × 10−4 | 5.188 × 10−4 | 1.732 × 10−5 | 2.389 × 10−5 |
5 | 366 | 4.476 × 10−4 | 4.608 × 10−4 | 4.829 × 10−4 | 1.318 × 10−5 | 3.532 × 10−5 |
6 | 368 | 3.937 × 10−4 | 3.923 × 10−4 | 4.122 × 10−4 | −1.383 × 10−6 | 1.845 × 10−5 |
7 | 370 | 3.443 × 10−4 | 3.493 × 10−4 | 3.556 × 10−4 | 4.972 × 10−6 | 1.133 × 10−5 |
8 | 372 | 3.054 × 10−4 | 3.299 × 10−4 | 3.231 × 10−4 | 2.451 × 10−5 | 1.772 × 10−5 |
9 | 374 | 2.698 × 10−4 | 2.991 × 10−4 | 3.062 × 10−4 | 2.932 × 10−5 | 3.646 × 10−5 |
10 | 376 | 2.412 × 10−4 | 2.473 × 10−4 | 2.572 × 10−4 | 6.092 × 10−6 | 1.599 × 10−5 |
11 | 378 | 2.087 × 10−4 | 1.839 × 10−4 | 2.124 × 10−4 | −2.483 × 10−5 | 3.667 × 10−6 |
12 | 380 | 1.765 × 10−4 | 1.606 × 10−4 | 1.817 × 10−4 | −1.595 × 10−5 | 5.204 × 10−6 |
13 | 382 | 1.489 × 10−4 | 1.626 × 10−4 | 1.611 × 10−4 | 1.373 × 10−5 | 1.224 × 10−5 |
14 | 384 | 1.284 × 10−4 | 1.676 × 10−4 | 1.558 × 10−4 | 3.921 × 10−5 | 2.746 × 10−5 |
15 | 386 | 1.195 × 10−4 | 1.373 × 10−4 | 1.378 × 10−4 | 1.775 × 10−5 | 1.825 × 10−5 |
16 | 388 | 1.006 × 10−4 | 9.953 × 10−5 | 1.174 × 10−4 | −1.057 × 10−6 | 1.678 × 10−5 |
17 | 390 | 9.334 × 10−5 | 7.256 × 10−5 | 9.264 × 10−5 | −2.078 × 10−5 | −6.978 × 10−7 |
18 | 392 | 9.857 × 10−5 | 7.198 × 10−5 | 9.868 × 10−5 | −2.659 × 10−5 | 1.149 × 10−7 |
19 | 394 | 7.813 × 10−5 | 7.927 × 10−5 | 1.008 × 10−4 | 1.138 × 10−6 | 2.271 × 10−5 |
20 | 396 | 4.824 × 10−5 | 8.857 × 10−5 | 8.343 × 10−5 | 4.033 × 10−5 | 3.519 × 10−5 |
21 | 398 | 5.290 × 10−5 | 8.301 × 10−5 | 7.534 × 10−5 | 3.011 × 10−5 | 2.245 × 10−5 |
22 | 400 | 7.144 × 10−5 | 7.917 × 10−5 | 7.819 × 10−5 | 7.724 × 10−6 | 6.743 × 10−6 |
23 | 402 | 8.237 × 10−5 | 7.674 × 10−5 | 9.009 × 10−5 | −5.624 × 10−6 | 7.717 × 10−6 |
24 | 404 | 8.984 × 10−5 | 7.490 × 10−5 | 1.001 × 10−4 | −1.494 × 10−5 | 1.030 × 10−5 |
25 | 406 | 4.815 × 10−5 | 6.516 × 10−5 | 7.324 × 10−5 | 1.701 × 10−5 | 2.509 × 10−5 |
26 | 408 | 1.418 × 10−4 | 1.933 × 10−4 | 1.966 × 10−4 | 5.156 × 10−5 | 5.485 × 10−5 |
No. | Node No. | Inflation Pressure 1500 Pa | Inflation Pressure 2000 Pa | Inflation Pressure 2500 Pa | Pressure 2000 Pa Increment | Pressure 2500 Pa Increment |
---|---|---|---|---|---|---|
1 | 77 | 9.509 × 10−5 | 1.012 × 10−4 | 1.220 × 10−4 | 6.150 × 10−6 | 2.690 × 10−5 |
2 | 179 | 1.449 × 10−4 | 1.756 × 10−4 | 1.771 × 10−4 | 3.064 × 10−5 | 3.214 × 10−5 |
3 | 281 | 1.729 × 10−4 | 2.035 × 10−4 | 1.905 × 10−4 | 3.066 × 10−5 | 1.758 × 10−5 |
4 | 383 | 1.370 × 10−4 | 1.695 × 10−4 | 1.606 × 10−4 | 3.252 × 10−5 | 2.364 × 10−5 |
5 | 485 | 7.574 × 10−5 | 1.120 × 10−4 | 1.024 × 10−4 | 3.630 × 10−5 | 2.667 × 10−5 |
6 | 587 | 5.556 × 10−5 | 8.677 × 10−5 | 6.930 × 10−5 | 3.121 × 10−5 | 1.374 × 10−5 |
7 | 689 | 7.840 × 10−5 | 9.092 × 10−5 | 1.023 × 10−4 | 1.251 × 10−5 | 2.387 × 10−5 |
No. | Node No. | Inflation Pressure 1500 Pa | Inflation Pressure 2000 Pa | Inflation Pressure 2500 Pa | Pressure 2000 Pa Increment | Pressure 2500 Pa Increment |
---|---|---|---|---|---|---|
1 | 358 | 8.093 × 10−4 | 7.847 × 10−4 | 7.404 × 10−4 | −2.459 × 10−5 | −6.892 × 10−5 |
2 | 360 | 8.359 × 10−4 | 8.068 × 10−4 | 7.620 × 10−4 | −2.902 × 10−5 | −7.381 × 10−5 |
3 | 362 | 8.922 × 10−4 | 8.416 × 10−4 | 8.118 × 10−4 | −5.057 × 10−5 | −8.045 × 10−5 |
4 | 364 | 8.778 × 10−4 | 8.605 × 10−4 | 8.468 × 10−4 | −1.730 × 10−5 | −3.097 × 10−5 |
5 | 366 | 8.293 × 10−4 | 8.470 × 10−4 | 8.497 × 10−4 | 1.772 × 10−5 | 2.043 × 10−5 |
6 | 368 | 8.049 × 10−4 | 8.139 × 10−4 | 7.985 × 10−4 | 8.984 × 10−6 | −6.449 × 10−6 |
7 | 370 | 7.558 × 10−4 | 7.613 × 10−4 | 7.532 × 10−4 | 5.537 × 10−6 | −2.535 × 10−6 |
8 | 372 | 7.232 × 10−4 | 7.225 × 10−4 | 7.334 × 10−4 | −6.680 × 10−7 | 1.021 × 10−5 |
9 | 374 | 6.888 × 10−4 | 6.979 × 10−4 | 7.124 × 10−4 | 9.141 × 10−6 | 2.367 × 10−5 |
10 | 376 | 6.303 × 10−4 | 6.619 × 10−4 | 6.691 × 10−4 | 3.158 × 10−5 | 3.876 × 10−5 |
11 | 378 | 5.813 × 10−4 | 6.084 × 10−4 | 6.167 × 10−4 | 2.711 × 10−5 | 3.538 × 10−5 |
12 | 380 | 5.477 × 10−4 | 5.692 × 10−4 | 5.750 × 10−4 | 2.155 × 10−5 | 2.736 × 10−5 |
13 | 382 | 5.068 × 10−4 | 5.287 × 10−4 | 5.481 × 10−4 | 2.188 × 10−5 | 4.135 × 10−5 |
14 | 384 | 4.779 × 10−4 | 4.892 × 10−4 | 5.060 × 10−4 | 1.138 × 10−5 | 2.818 × 10−5 |
15 | 386 | 4.248 × 10−4 | 4.452 × 10−4 | 4.569 × 10−4 | 2.046 × 10−5 | 3.216 × 10−5 |
16 | 388 | 3.550 × 10−4 | 4.098 × 10−4 | 4.265 × 10−4 | 5.483 × 10−5 | 7.150 × 10−5 |
17 | 390 | 3.135 × 10−4 | 3.579 × 10−4 | 3.832 × 10−4 | 4.446 × 10−5 | 6.973 × 10−5 |
18 | 392 | 3.174 × 10−4 | 3.184 × 10−4 | 3.475 × 10−4 | 9.670 × 10−7 | 3.011 × 10−5 |
19 | 394 | 2.820 × 10−4 | 2.988 × 10−4 | 3.140 × 10−4 | 1.685 × 10−5 | 3.208 × 10−5 |
20 | 396 | 2.222 × 10−4 | 2.572 × 10−4 | 2.830 × 10−4 | 3.504 × 10−5 | 6.082 × 10−5 |
21 | 398 | 1.868 × 10−4 | 2.028 × 10−4 | 2.249 × 10−4 | 1.607 × 10−5 | 3.816 × 10−5 |
22 | 400 | 1.472 × 10−4 | 1.756 × 10−4 | 1.827 × 10−4 | 2.842 × 10−5 | 3.553 × 10−5 |
23 | 402 | 1.128 × 10−4 | 1.510 × 10−4 | 1.525 × 10−4 | 3.820 × 10−5 | 3.962 × 10−5 |
24 | 404 | 7.997 × 10−5 | 1.154 × 10−4 | 1.228 × 10−4 | 3.539 × 10−5 | 4.282 × 10−5 |
25 | 406 | 7.193 × 10−5 | 9.123 × 10−5 | 9.911 × 10−5 | 1.930 × 10−5 | 2.718 × 10−5 |
26 | 408 | 4.829 × 10−5 | 6.634 × 10−5 | 7.394 × 10−5 | 1.805 × 10−5 | 2.565 × 10−5 |
References
- Liao, J.; Wang, N.; Luo, S.B.; Li, J.; Chen, Z.; Ling, L.Y. Design and analysis of inflatable wing of rapid deployment UAV. J. Cent. South Univ. 2022, 53, 1241–1249. [Google Scholar]
- Desai, S.; Schetz, J.A.; Kapania, R.K.; Gupta, R. Wind Tunnel Testing of Tethered Inflatable Wings. J. Aircr. 2024, 61, 1717–1734. [Google Scholar] [CrossRef]
- Ma, N.; Meng, J.H.; Luo, J.Q.; Liu, Q. Optimization of thermal-fluid-structure coupling for variable-span inflatable wings considering case correlation. Aerosp. Sci. Technol. 2024, 153, 109448. [Google Scholar] [CrossRef]
- Mao, Z.B.; Li, Z.P.; Chen, B.; Ge, H.; Xu, Y.; Wang, J.; Chen, X. Prediction method for mechanical properties of inflatable wing and its buckling failure mechanism. Aerosp. Sci. Technol. 2025, 163, 110304. [Google Scholar] [CrossRef]
- Alessandra, L.; Frederico, A.; Afzal, S. A Study on the Surrogate-Based Optimization of Flexible Wings Considering a Flutter Constraint. Appl. Sci. 2024, 14, 2384. [Google Scholar]
- Ma, N.; Liu, L.; Meng, F.; Meng, J. Structural design and modal behaviors analysis of a new swept baffled inflatable wing. Def. Technol. 2023, 24, 382–398. [Google Scholar] [CrossRef]
- Liu, L.; Hu, F.; Jiang, Z.; Liu, T.; Xu, Y. Study on influence of ambient temperature on biaxial stress and strength of flexible inflatable wing film. Results Phys. 2019, 12, 85–93. [Google Scholar] [CrossRef]
- Liu, L.B.; Jiang, Z.Y.; Peng, K.; Hu, F.; Yang, H. Research on Influence of Temperature Variation on Deformation of Inflatable Wing Skin Film. In Proceedings of the 2018 International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018), Chengdu, China, 25–26 March 2018; Atlantis Press: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Li, B.; Dong, N.; Wang, C.; Zhang, H. Wrinkling and failure behavior research of inflated wing. Chin. J. Aeronaut. 2016, 37, 3044–3053. [Google Scholar]
- Loh, B.; Jamey, J. In-Flight Deployment Dynamics of Inflatable Wings. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
- Dilshad, A.; Muhammed, S.P.; Ajeet, K.; Khan, M. Recent developments of polymer-based skins for morphing wing applications. Polym. Test. 2024, 135, 108463. [Google Scholar]
- Norris, R.K.; Pulliam, W.J. Historical Perspective on Inflatable Wing Structures. In Proceedings of the AIAA Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA, 4–7 May 2009. [Google Scholar]
- Song, Y.Y.; Gandhi, U.; Aris, A. A Baffled Inflatable Wing made from High Performance Textile Materials: Design, Analysis, and Experiments. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 January 2021. [Google Scholar]
- Wu, J.; Xu, Q.Y.; Zhang, Z.; Hou, A. Aeroelastic characteristics of inflatable reentry vehicle in transonic and supersonic regions. Comput. Fluids 2022, 237, 105338. [Google Scholar] [CrossRef]
- Kong, L.S.; Yang, Y.C.; Wang, J.; Chen, L. Application of a Coupled Eulerian-Lagrangian Approach to the Shape and Force of Scientific Balloons. Appl. Sci. 2025, 15, 1517. [Google Scholar] [CrossRef]
- Cadogan, D.; Smith, T.; Uhelsky, F.; MacKendrick, R. Morphing inflatable wing development for compact package unmanned aerial vehicles. In Proceedings of the American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/American Society of Civil Engineers/American Helicopter Society/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, 19–22 April 2004. [Google Scholar]
- Wei, J.Z.; Hou, S.; Xia, Q.; Tan, H. Structural design and dynamic analysis of an inflatable delta wing. Aerosp. Sci. Technol. 2023, 139, 108371. [Google Scholar] [CrossRef]
- Cadogan, D.; Scarborough, S.; Gleeson, D.; Dixit, A. Recent Development and Test of Inflatable Wings. In Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, RI, USA, 1–4 May 2006. [Google Scholar]
- Amiy, C.; V, M.; Satish, K. A review on dynamic analysis of membrane based space structures. Adv. Space Res. 2024, 74, 740–763. [Google Scholar]
- Li, N.; Peng, H.J.; Li, F. Instantaneous optimal control of inflatable folded structures. Acta Astronaut. 2022, 195, 52–67. [Google Scholar] [CrossRef]
- Ji, J.J.; Zhu, J.F.; Niu, B.Y.; Lu, J.; Huang, Y. Full-Field Deformation Perception via Flexible Sensing Film Integrating Modified Inverse Finite Element Method. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
No. | Symbol | Parameter | Value |
---|---|---|---|
1 | Ex = Ey | Elastic modulus | 7.001 GPa |
2 | ρ | Area density | 155 g/m2 |
3 | t | Thickness | 0.135 mm |
4 | μ | Poisson’s ratio | 0.3 |
5 | l | Wing span | 1200 mm |
6 | b | Wing chord length | 300 mm |
7 | ρd | Body density | 962.963 kg/m3 |
No. | Initial Volume/m3 | Environmental Pressure PE/kPa | Internal Inflation Pressure Pin /kPa | Simulated Aerodynamic Pressure Pa/Pa | Internal and External Pressure Difference/Pa |
---|---|---|---|---|---|
1 | 0.002 | 101.325 | 102.825 | 150 | 1500 |
2 | 0.002 | 101.325 | 103.325 | 150 | 2000 |
3 | 0.002 | 101325 | 103.825 | 150 | 2500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Fan, M.; Cui, X. The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film. Appl. Sci. 2025, 15, 7596. https://doi.org/10.3390/app15137596
Liu L, Fan M, Cui X. The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film. Applied Sciences. 2025; 15(13):7596. https://doi.org/10.3390/app15137596
Chicago/Turabian StyleLiu, Longbin, Mengyang Fan, and Xingfu Cui. 2025. "The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film" Applied Sciences 15, no. 13: 7596. https://doi.org/10.3390/app15137596
APA StyleLiu, L., Fan, M., & Cui, X. (2025). The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film. Applied Sciences, 15(13), 7596. https://doi.org/10.3390/app15137596