Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = pitting corrosion potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6311 KiB  
Article
Unraveling the Excellent High-Temperature Oxidation Behavior of FeNiCuAl-Based Alloy
by Guangxin Wu, Gaosheng Li, Lijun Wei, Hao Chen, Yujie Wang, Yunze Qiao, Yu Hua, Chenyang Shi, Yingde Huang and Wenjie Yang
Materials 2025, 18(15), 3679; https://doi.org/10.3390/ma18153679 - 5 Aug 2025
Abstract
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) [...] Read more.
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) of FeNiCuAlCr, FeNiCuAlCo, and FeNiCuAlMn being approximately two to three orders of magnitude lower than that of the FeNiCu alloy. Specifically, FeNiCuAlCr exhibited the lowest kp value of 1.72 × 10−6 mg2·cm4/s, which is significantly lower than those of FeNiCuAlCo (3.29 × 10−6 mg2·cm4/s) and FeNiCuAlMn (1.71 × 10−5 mg2·cm4/s). This suggests that the addition of chromium promotes the formation of a dense Al2O3/Cr2O3 oxide layer, significantly enhancing the oxidation resistance. Furthermore, corrosion resistance was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. FeNiCuAlCr demonstrated exceptional resistance to localized corrosion, as indicated by its low corrosion current density (45.7 μA/cm2) and high pitting potential (−0.21 V), highlighting its superior corrosion performance. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Use of Phalaris canariensis Extract as CO2 Corrosion Inhibitor of Brass
by Edgar Salazar-Salazar, Dante Guillermo Gutierrez-Granda, Earvin Galvan, Ana Karen Larios-Galvez, America Maria Ramirez-Arteaga, Roy Lopez-Sesenes, Alfredo Brito-Franco, Jesus Porcayo-Calderon and Jose Gonzalo Gonzalez-Rodriguez
Materials 2025, 18(15), 3449; https://doi.org/10.3390/ma18153449 - 23 Jul 2025
Viewed by 256
Abstract
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract [...] Read more.
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract is an excellent CO2 corrosion inhibitor with an efficiency that increases with its concentration, reaching its maximum value of 99% with an inhibitor concentration of 100 ppm, decreasing the corrosion current density by more than two orders of magnitude. The addition of the Phalaris canariensis extract increased the pitting potential, decreased the passive current density values, and affected cathodic reactions, behaving as a mixed type of inhibitor. The corrosion process was under charge transfer control, and it was neither affected by the addition of the inhibitor nor by the elapsing time. The main compounds found in the Phalaris canariensis extract included antioxidants such as palmitic and oleic acids. Full article
Show Figures

Figure 1

13 pages, 4101 KiB  
Communication
Time-Domain Impedance Analysis on Passivation Quality of 316L Stainless Steel with Portable-Probe-Measured Potential Step Transient
by Haobin Li, Bufan Jiang, Chi Cheng, Congqian Cheng, Qibo Wang, Tieshan Cao and Jie Zhao
Materials 2025, 18(14), 3276; https://doi.org/10.3390/ma18143276 - 11 Jul 2025
Viewed by 269
Abstract
To achieve rapid detection of stainless steel passivation quality, a time-domain impedance method was investigated based on a potential step transient with a portable three-electrode probe. A comparison of the effects of signal analysis and transient parameters was conducted, and the results were [...] Read more.
To achieve rapid detection of stainless steel passivation quality, a time-domain impedance method was investigated based on a potential step transient with a portable three-electrode probe. A comparison of the effects of signal analysis and transient parameters was conducted, and the results were compared with those obtained in a bulk solution with a general three-electrode system. The measured transient current with the probe offered a higher signal-to-noise ratio, with minimal deviation from the frequency-domain impedance observed at a step amplitude of 0–100 mV. Measurements using the three-electrode probe under different stabilization times indicated that, after 30 s of stabilization, the measurement deviation was less than 1%, enabling a rapid assessment. Comparative testing of surfaces with varying passivation quality revealed that the pitting potential increases with increasing time-domain impedance, demonstrating the method’s capability to distinguish passivated surfaces with different corrosion resistances. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

20 pages, 3323 KiB  
Article
Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys
by Minja Miličić Lazić, Dijana Mitić, Biljana Dojčinović, Marko Lazić, Aleksandra S. Popović and Branimir N. Grgur
Metals 2025, 15(7), 758; https://doi.org/10.3390/met15070758 - 5 Jul 2025
Viewed by 237
Abstract
In this study, a TiNi alloy with a composition of 50 at.% of titanium and 50 at.% of nickel is investigated in terms of its corrosion and biocompatibility behavior for biomedical applications. The corrosion measurements, which include the determination of open-circuit potential and [...] Read more.
In this study, a TiNi alloy with a composition of 50 at.% of titanium and 50 at.% of nickel is investigated in terms of its corrosion and biocompatibility behavior for biomedical applications. The corrosion measurements, which include the determination of open-circuit potential and linear polarization resistance measurements, cyclic polarization measurements, and electrochemical impedance spectroscopy in 9 g L−1 NaCl, show that TiNi has satisfactory corrosion stability. According to the SEM and EDS analysis, after cyclic polarization, pitting corrosion occurred, accompanied by the dissolution of the unstable Ti2Ni inclusions. The analysis also showed that TiNi has good biocompatibility for human osteoblast-like cells, as determined by the mitochondrial activity, which was assessed using a direct contact test following ISO standard 10993-5, via scanning electron microscopy (SEM) and fluorescent microscopy. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Figure 1

25 pages, 4204 KiB  
Article
Electrochemical Evaluation of New Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride: Implications for Dental Implant Applications
by Hanine Slama, Qanita Tayyaba, Mariya Kadiri and Hendra Hermawan
Materials 2025, 18(13), 2973; https://doi.org/10.3390/ma18132973 - 23 Jun 2025
Viewed by 479
Abstract
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be [...] Read more.
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be confirmed. In this work, the corrosion behavior of two Ti-based HEAs, TiZrHfNb, and TiZrHfNbTa was evaluated in comparison to CP-Ti and Ti-6Al-4V in artificial saliva (AS) solution and in AS with fluoride ion content (ASF). A set of electrochemical tests (electrochemical impedance spectroscopy, cyclic polarization, and Mott–Schottky) was employed and complemented with surface characterization analyses (scanning electron microscopy and atomic force microscopy) to determine dissolution and passivation mechanisms of the alloys. In general, the HEAs exhibited a far superior corrosion resistance compared to CP-Ti and Ti-6Al-4V alloys in both solutions. In the AS solution, the TiZrHfNb exhibited the highest polarization resistance and pitting potential, indicating a high corrosion resistance due to the formation of a robust passive layer. Whilst in the ASF solution, the TiZrHfNbTa showed a greater corrosion resistance due to the synergistic effect of Nb and Ta oxides that enhanced passive film stability. This finding emphasizes the role of Ta in elevating the corrosion resistance of Ti-based HEAs in the presence of fluoride ions and confirms the importance of chemical composition optimization in the development of next-generation dental alloys. Based on its electrochemical corrosion behavior, TiZrHfNbTa HEAs are promising new materials for high-performance reduced-diameter dental implants. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

13 pages, 9140 KiB  
Article
Effect of Heat Treatment on Corrosion of an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in 3.5 wt% NaCl Solution
by Jun Jiang, Haijing Sun and Jie Sun
Metals 2025, 15(6), 681; https://doi.org/10.3390/met15060681 - 19 Jun 2025
Viewed by 466
Abstract
This paper studies how heat treatments influence the corrosion of an AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) in a 3.5 wt% NaCl solution, by comparing the corrosion behaviors of as-cast, 600 °C heat-treated, and 1000 °C heat-treated samples using microstructure characterization, electrochemical measurements, [...] Read more.
This paper studies how heat treatments influence the corrosion of an AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) in a 3.5 wt% NaCl solution, by comparing the corrosion behaviors of as-cast, 600 °C heat-treated, and 1000 °C heat-treated samples using microstructure characterization, electrochemical measurements, and surface characterization. The electrochemical results show that the pitting potential rises and the passive current density and passive film resistance are almost changeless with an increasing heat treatment temperature. The enhancement in the pitting corrosion resistance results from the increased amount of the Cr-rich FCC phase and decreased amount of the B2 phase rich in the Al element, which are induced by the heat treatment. On one hand, this microstructure evolution can make the passive film have more Cr2O3 and less Al2O3, thereby enhancing its protective properties, as confirmed by the X-ray photoelectron spectroscopy analysis. On the other hand, the decreased amount of the Al-rich B2 phase can make the pitting corrosion less prone to initiate since the B2 phase can act as the pit initiation site, which is supported by the observation of corrosion morphologies, due to its higher electrochemical activity. In a summary, the heat treatment is beneficial for improving the pitting corrosion resistance of the AlCoCrFeNi2.1 EHEA. Full article
(This article belongs to the Special Issue High-Entropy Alloy and Films: Design, Properties and Application)
Show Figures

Figure 1

17 pages, 2850 KiB  
Article
Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement
by Byung-Hyun Shin, Miyoung You, Jinyong Park, Junghyun Cho, Seongjun Kim, Jung-Woo Ok, Jonggi Hong, Taekyu Lee, Jong-Seong Bae, Pungkeun Song and Jang-Hee Yoon
Crystals 2025, 15(6), 579; https://doi.org/10.3390/cryst15060579 - 19 Jun 2025
Viewed by 360
Abstract
Portland cement is one of the most widely used construction materials employed in both large-scale structures and everyday applications. Although various materials are often added during production to enhance their performance, NaCl can be introduced in the process for various reasons. Despite this [...] Read more.
Portland cement is one of the most widely used construction materials employed in both large-scale structures and everyday applications. Although various materials are often added during production to enhance their performance, NaCl can be introduced in the process for various reasons. Despite this issue, existing studies lack sufficient quantitative data on the effects of NaCl on cement properties. Therefore, this study aims to investigate the physical and chemical degradation mechanisms in cement containing NaCl. Cement specimens were prepared by mixing cement, water, and NaCl, followed by stirring at 60 rpm and curing at room temperature for seven days. Microstructural changes as a function of the NaCl concentration were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Electrochemical properties were evaluated via open-circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization tests. The results indicate that increasing the NaCl concentration leads to the formation of fine precipitates, the degradation of the cement matrix, and the reduced stability of major hydration products. Furthermore, the electrochemical analysis revealed that higher NaCl concentrations weaken the passive layer on the cement surface, resulting in an increased corrosion rate from 1 × 10−7 to 4 × 10−7 on the active polarization of the potentiodynamic polarization curve. Additionally, the pitting potential (Epit) decreased from 0.73 V to 0.61 V with an increasing NaCl concentration up to 3 wt.%. This study quantitatively evaluates the impact of NaCl on the durability of Portland cement and provides fundamental data to ensure the long-term stability of cement structures in chloride-rich environments. Full article
Show Figures

Figure 1

24 pages, 14794 KiB  
Article
Development of Laser AM Process to Repair Damaged Super Duplex Stainless Steel Components
by Abdul Ahmad, Paul Xirouchakis, Alastair Pearson, Frazer Brownlie and Yevgen Gorash
Sustainability 2025, 17(12), 5438; https://doi.org/10.3390/su17125438 - 12 Jun 2025
Viewed by 580
Abstract
The escalating demands of industrial applications, particularly those involving severe wear, temperature, and corrosive environments, present significant challenges for the long-term strength of critical components, often fabricated from high-value materials such as super duplex stainless steel alloys. Super duplex can withstand the corrosive [...] Read more.
The escalating demands of industrial applications, particularly those involving severe wear, temperature, and corrosive environments, present significant challenges for the long-term strength of critical components, often fabricated from high-value materials such as super duplex stainless steel alloys. Super duplex can withstand the corrosive environment (in particular, crevice corrosion and pitting damage) and maintain mechanical integrity sufficient for high-pressure pumping applications such as seawater injection and crude oil. Conventional repair methodologies frequently result in component rejection due to process-induced distortions or detrimental phase transformations, contributing to substantial material waste and hindering the adoption of circular economy principles. This research addresses this issue by developing and validating a novel repair process utilizing laser metal deposition (LMD) additive manufacturing. The research focuses on establishing optimized process parameters to ensure the salvaging and restoration of damaged super duplex components while preserving their requisite mechanical integrity and corrosion resistance, in accordance with industry standards. Comprehensive characterization, including microstructural analysis, chemical composition verification, hardness profiling, and mechanical fatigue testing, confirms the efficacy of the LMD repair process. This work demonstrates the potential for extending the service life of critical components, thereby promoting resource efficiency and contributing to a more sustainable and resilient industrial paradigm. Full article
Show Figures

Graphical abstract

16 pages, 11068 KiB  
Article
Effect of Interlayers on Microstructure and Corrosion Resistance of 304/45 Stainless Steel Cladding Plate
by Yongtong Chen and Yi Ding
Materials 2025, 18(11), 2473; https://doi.org/10.3390/ma18112473 - 24 May 2025
Viewed by 549
Abstract
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This [...] Read more.
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This study designed NiP and NiCuP interlayer alloys to effectively block carbon diffusion in stainless steel cladding plates. The effect of adding interlayers on the microstructure of stainless steel cladding plate was studied by using optical microscopy and scanning electron microscopy. Electrochemical tests were subsequently conducted to evaluate the impact of interlayer incorporation on the corrosion resistance of stainless steel cladding. The results demonstrated that 304/45 specimens exhibited severe carbon diffusion, resulting in the poorest corrosion resistance. The addition of interlayers improved the corrosion resistance of stainless steel cladding to varying degrees. Among these, the 304/NiCuP/45 specimen showed the best performance. It had an intergranular corrosion susceptibility of only 0.25% and pitting potential as high as 0.336 V, which indicated its superior corrosion resistance. The passive film of stainless steel cladding exhibited n-type semiconductor characteristics. And 304/NiCuP/45 specimen demonstrated the lowest carrier density of 3.02 × 1018 cm−3, which indicated the formation of the densest passive film. Full article
Show Figures

Figure 1

16 pages, 3392 KiB  
Article
DED Powder Modification for Single-Layer Coatings on High-Strength Steels
by Unai Garate, Enara Mardaras, Jon Arruabarrena, Garikoitz Artola, Aitzol Lamikiz and Luis Norberto López de Lacalle
J. Manuf. Mater. Process. 2025, 9(5), 152; https://doi.org/10.3390/jmmp9050152 - 6 May 2025
Cited by 1 | Viewed by 585
Abstract
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal [...] Read more.
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal composition, deviating from the nominal powder chemistry. Although the application of multiple layers can gradually reduce this dilution effect, it introduces additional complexity and processing time. This study proposes an alternative strategy to counteract substrate dilution from the very first deposited layer, eliminating the need for multilayer coatings. Specifically, to achieve a corrosion-resistant monolayer of AISI 316L stainless steel on a high-strength, quenched-and-tempered AISI 4140 steel substrate, a dilution-compensating alloy powder is added to the standard AISI 316L feedstock. Single-layer coatings, both with and without compensation, were evaluated in terms of chemical composition, microstructure, and corrosion resistance. The results show that unmodified coatings suffered a chromium depletion of approximately 2 wt.%, leading to a reduced pitting potential of Ep = 725 ± 6 mV in synthetic seawater. In contrast, the use of the compensation alloy preserved chromium content and significantly improved corrosion resistance, achieving a pitting potential of Ep = 890 ± 9 mV. Full article
(This article belongs to the Special Issue Advances in Directed Energy Deposition Additive Manufacturing)
Show Figures

Figure 1

14 pages, 5493 KiB  
Article
Evolution of Microstructure, Tensile Mechanical and Corrosion Properties of a Novel Designed TRIP-Aided Economical 19Cr Duplex Stainless Steel After Aging Treatment
by Xi Shi, Shan Liu, Shuaiwei Chen, Qingxuan Ran, Bo Liang and Xiaoliang Yan
Crystals 2025, 15(5), 419; https://doi.org/10.3390/cryst15050419 - 29 Apr 2025
Viewed by 318
Abstract
In this experiment, a novel designed Mn-N-bearing, nearly Ni-free, TRIP-aided economical 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.26N-0.03C) duplex stainless steel (DSS) was prepared, and it exhibited a good combination of strength and toughness after suitable solution treatment, showing good application potential. The deformation mechanisms of ferrite and [...] Read more.
In this experiment, a novel designed Mn-N-bearing, nearly Ni-free, TRIP-aided economical 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.26N-0.03C) duplex stainless steel (DSS) was prepared, and it exhibited a good combination of strength and toughness after suitable solution treatment, showing good application potential. The deformation mechanisms of ferrite and austenite are different during tensile deformation at room temperature: the ferrite phase was deformed by a dislocation slip mechanism and formed a cell structure due to its higher stacking fault energy; the lower stacking fault energy of austenite resulted in a strain-induced martensite phase transformation mechanism. With an increase in aging time from 1 h to 7 h at 750 °C in air, the σ phase precipitates in the ferrite triple grain boundary junction, which leads to an increase in ultimate tensile strength, acts as an obstacle to the dislocation motion and decreases the ductility, deteriorating the pitting corrosion resistance in 3.5 wt.% NaCl solution at the same time. The σ phase precipitation behavior does not alter the deformation mechanism of the phases of the solution-treated TRIP-aided economical DSS. Full article
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
Evaluation of Crack Formation in Heat Pipe-Welded Joints
by Min Ji Song, Keun Hyung Lee, Jun-Seob Lee, Heesan Kim, Woo Cheol Kim and Soo Yeol Lee
Materials 2025, 18(9), 2028; https://doi.org/10.3390/ma18092028 - 29 Apr 2025
Viewed by 468
Abstract
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and [...] Read more.
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and electrochemical corrosion testing. The results indicate that cracks were generated in the heat-affected zone (HAZ), primarily caused by galvanic corrosion and thermal expansion-induced stress accumulation. Open circuit potential (OCP) measurements in a 3 M NaCl solution confirmed that the HAZ was anodic, leading to the most vulnerable position to corrosion. Furthermore, localized electrochemical tests were conducted for respective microstructural regions within the HAZ. The results reveal that coarse-grained HAZ exhibited the lowest corrosion potential, giving rise to preferential corrosion, promoting pit formation, and serving as initiation sites for stress concentration and crack propagation. FEA simulations demonstrate that pre-existing microvoids in the HAZ act as stress concentration sites, undergoing a localized stress exceeding 475 MPa. These findings emphasize the importance of controlling microstructural stability and mechanical integrity in welded pipelines, particularly in corrosive environments subjected to thermal stresses. Full article
Show Figures

Figure 1

18 pages, 19325 KiB  
Article
Corrosion Behaviour of S32101 (1.4162—X2CrMnNiN21-5-1) Stainless Steel in Pulping Liquors
by Banele Siyabonga Kheswa, David Whitefield, Herman Potgieter and Michael Bodunrin
Materials 2025, 18(9), 1921; https://doi.org/10.3390/ma18091921 - 24 Apr 2025
Viewed by 370
Abstract
The corrosion behaviour of lean duplex S32101 (1.4162—X2CrMnNiN21-5-1) stainless steel was assessed in various corrosive environments relevant to the pulp and paper industry. Electrochemical techniques, including open-circuit potential measurements and cyclic polarisation, were used to evaluate the corrosion resistance of S32101 stainless steel [...] Read more.
The corrosion behaviour of lean duplex S32101 (1.4162—X2CrMnNiN21-5-1) stainless steel was assessed in various corrosive environments relevant to the pulp and paper industry. Electrochemical techniques, including open-circuit potential measurements and cyclic polarisation, were used to evaluate the corrosion resistance of S32101 stainless steel in various acidic, saline, and industrial liquors such as black, green, and white liquors, as well as dissolved chlorine dioxide bleaching solutions. To evaluate the extent of damage and corrosion mechanisms, post-exposure surface analysis was conducted using scanning electron microscopy (SEM). The results showed that S32101 experienced pitting corrosion in chloride-containing solutions, particularly in salt and acidified-salt environments. Corrosion rates increased with rising temperatures across all solutions. The highest corrosion rate of 3.17 mm/yr was observed in the highly alkaline white liquor at 50 °C, whilst chlorine dioxide induced the least aggressive effects at all temperatures. The suitability of S32101 stainless steel in handling pulp and paper liquors is shown in its corrosion resistance against the bleaching medium and low-temperature saline solutions, but it is not recommended for prolonged exposure to high alkaline liquors or chloride-rich solutions. Full article
(This article belongs to the Special Issue Corrosion and Formation of Surface Films on Metals and Alloys)
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Numerical Study on Sharp Defect Evaluation Using Higher Order Modes Cluster (HOMC) Guided Waves and Machine Learning Models
by Jing Xiao and Fangsen Cui
Acoustics 2025, 7(2), 22; https://doi.org/10.3390/acoustics7020022 - 17 Apr 2025
Viewed by 627
Abstract
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, [...] Read more.
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, offer enhanced resolution compared to low-frequency guided waves. They exhibit minimal dispersion, reduced sensitivity to surface features such as T-joints, and retain most of their energy upon interacting with surface defects. This study employs two-dimensional finite element simulations to investigate the propagation and interaction of HOMC guided waves with defects in a T-joint and an aluminum plate. Both conventional fitting methods and machine learning (ML) models are used to estimate the depth of sharp defects reaching up to half the plate thickness. The results demonstrate that both approaches can utilize data from defects of one width to predict the depth of defects with a different width. The ML model outperforms the fitting method, achieving higher prediction accuracy while reducing dependence on expert knowledge. The developed method shows strong potential for characterizing sharp defects of varying widths, closely resembling real-world pitting corrosion scenarios. Full article
Show Figures

Figure 1

15 pages, 7518 KiB  
Article
Microstructure, Mechanical Properties, and Corrosion Resistance of NiAl-CoCrFeMo High-Entropy Alloys by Controlling Mo Co-Doping
by Zhixin Xu, Ao Li, Xiaohong Wang, Yunting Su and Tengfei Ma
Coatings 2025, 15(4), 469; https://doi.org/10.3390/coatings15040469 - 15 Apr 2025
Viewed by 547
Abstract
In this work, two alloys of Ni35Al30(FeCo)25Cr10-xMox (x = 0, 5) were prepared via the vacuum arc melting method, and the effects of Mo on the microstructure, mechanical properties, and friction and [...] Read more.
In this work, two alloys of Ni35Al30(FeCo)25Cr10-xMox (x = 0, 5) were prepared via the vacuum arc melting method, and the effects of Mo on the microstructure, mechanical properties, and friction and wear properties of the alloys were investigated. The addition of Mo improved the mechanical properties, wear resistance, and corrosion resistance of the alloy system. With the addition of trace amounts of Mo, the precipitate phase of the alloys transformed from spherical to acicular and plate-like. The precipitated phases in a co-lattice relationship with the matrix allow for a substantial increase in the strength of the alloy at both room and elevated temperatures without a significant loss of plasticity. Ni35Al30(FeCo)25Cr5Mo5 has excellent mechanical properties, with a hardness of 558.2 HV; a yield strength of 1320 MPa at 600 °C; and a yield strength of 537 MPa at 850 °C. As the temperature increased, the wear mechanism changed from abrasive wear to adhesive wear. At 600 °C, Ni35Al30(FeCo)25Cr5Mo5 had the lowest wear rate of 1.78 × 10−5 (mm3/Nm). The precipitated phases, which have high hardness and maintain a conformal interface with the matrix, play an important role in slowing delamination wear, keeping the wear rate of this alloy low at both room and high temperatures. Electrochemical experiments on the two alloys at room temperature revealed that Ni35Al30(FeCo)25Cr5Mo5 exhibited excellent resistance to pitting, with a pitting potential of 0.016 V. Full article
Show Figures

Graphical abstract

Back to TopTop