Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of the As-Cast TiNi Alloy
2.2. Corrosion Testing
2.3. Biocompatibility
2.3.1. Cell Cultivation
2.3.2. Cell Seeding on Samples
2.3.3. Cell Viability Assay
2.3.4. Preparation of Samples for Fluorescent Microscopy
2.3.5. Preparation of Samples for SEM Analysis
2.3.6. Inductively Coupled Plasma-Optical Emission (ICP-OES)
3. Results and Discussion
3.1. SEM and EDS Characterization of the TiNi Alloy
3.2. Corrosion Behavior
3.3. Biocompatibility of the TiNi Alloy
3.3.1. Cell Viability and Adhesion
3.3.2. Inductively Coupled Plasma Optical Emission Spectroscopy
3.3.3. Cytotoxicity of TiNi
4. Conclusions
- As-cast TiNi is a two-phase system. Apart from the primary TiNi phase matrix, the inclusion of an additional Ti2Ni cubic phase is detected.
- TiNi has acceptable corrosion stability. In addition to its moderately low corrosion potential and pitting corrosion at 0.34 V, the dissolution of the unstable Ti2Ni inclusions is also responsible for the breakdown potentials.
- Even though the examined TiNi alloy shows good corrosion behavior, the future optimization of the cooling processes should be performed to minimize the formation of Ti2Ni phases.
- The nickel ions’ release concentration was lower than the daily nickel intake from food and below the allergenic threshold. However, the Ni2+ release was higher than that of the Ti ion, indicating the instability of the protective surface oxide.
- The MTT assay and fluorescence microscopy analysis showed that cell viability and adhesion on TiNi samples are not significantly impaired compared to the control sample. Despite the well-preserved cell morphology cultured on the TiNi alloy, subtle changes in the form of a spherical shape were detected, which may suggest greater surface roughness or the possible release of nickel ions.
- Further improvement in the corrosion properties could be achieved by anodization.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, N.B. Medical shape memory alloy applications—The market and its products. Mater. Sci. Eng. A 2004, 378, 16–23. [Google Scholar] [CrossRef]
- Kapoor, D. Nitinol for medical applications: A brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents. Johnson Matthey Technol. Rev. 2017, 61, 66–76. [Google Scholar] [CrossRef]
- Patel, S.K.; Behera, B.; Swain, B.; Roshan, R.; Sahoo, D.; Behera, A. A review on NiTi alloys for biomedical applications and their biocompatibility. Mater. Today Proc. 2020, 33, 5548–5551. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Cheraghi Bidsorkhi, H. MEMS Applications of NiTi based shape memory alloys: A Review. Micro Nanosyst. 2016, 8, 79–91. [Google Scholar] [CrossRef]
- Stoeckel, D.; Pelton, A.; Duerig, T. Self-expanding nitinol stents: Material and design considerations. Eur. Radiol. 2004, 14, 292–301. [Google Scholar] [CrossRef]
- Nair, V.S.; Nachimuthu, R. The role of NiTi shape memory alloys in quality of life improvement through medical advancements: A comprehensive review. Proc. Inst. Mech. Eng. H 2022, 236, 923–950. [Google Scholar] [CrossRef] [PubMed]
- Szold, A. Nitinol: Shape-memory and super-elastic materials in surgery. Surg. Endosc. 2006, 20, 1493–1496. [Google Scholar] [CrossRef]
- Reinhardt, J.; Nguyen-Trong, T.-H.; Hähnel, S.; Bellemann, M.E.; Heiland, S. Magnetic resonance imaging of stents: Quantitative in vitro examination at 3 Tesla. Z. Med. Phys. 2009, 19, 278–287. [Google Scholar] [CrossRef]
- Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury 2005, 36, 1392–1404. [Google Scholar] [CrossRef]
- Akbarinia, S.; Sadrnezhaad, S.K.; Hosseini, S.A. Porous shape memory dental implant by reactive sintering of TiH2–Ni-urea mixture. Mater. Sci. Eng. C 2020, 107, 110213. [Google Scholar] [CrossRef]
- Mirshekari, G.R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S.K. Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel. Opt. Laser Technol. 2013, 54, 151–158. [Google Scholar] [CrossRef]
- Senthilnathan, K.; Shamimi, A.; Bonsignore, C.; Paranjape, H.; Duerig, T. Effect of prestrain on the fatigue life of superelastic nitinol. J. Mater. Eng. Perform. 2019, 28, 5946–5958. [Google Scholar] [CrossRef]
- Niinomi, M.; Liu, Y.; Nakai, M.; Liu, H.; Li, H. Biomedical titanium alloys with young’s moduli close to that of cortical bone. Regen. Biomater. 2016, 3, 173–185. [Google Scholar] [CrossRef]
- Laster, Z.; Muska, E.A.; Nagler, R. Pediatric mandibular fractures: Introduction of a novel therapeutic modality. J. Trauma. 2008, 64, 225–229. [Google Scholar] [CrossRef]
- Dunn, J.; Kusnezov, N.; Fares, A.; Mitchell, J.; Pirela-Cruz, M. The scaphoid staple: A systematic review. Hand 2017, 12, 236–241. [Google Scholar] [CrossRef]
- Molloy, R.D. Letters to the Editor. J. Trauma Acute Care Surg. 2009, 66, 963. [Google Scholar] [CrossRef]
- Ghimire, S.; Miramini, S.; Edwards, G.; Rotne, R.; Xu, J.; Ebeling, P.; Zhang, L. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep. 2021, 14, 100740. [Google Scholar] [CrossRef]
- Gojić, M.; Vrsalović, L.; Kožuh, S.; Ćubela, D.; Gudić, S. Microstructure and corrosion properties Ni-Ti alloy after electrochemical testing in 0.9% NaCl solution. Zašt. mater. (Mat. Prot. ). 2012, 53, 345–351. [Google Scholar]
- Tan, L.; Dodd, R.; Crone, W. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. Biomaterials 2003, 24, 3931–3939. [Google Scholar] [CrossRef]
- Altas, E. Investigation of the effects of surface oxide layer on wear and corrosion in NiTi alloys: A mechanical and chemical perspective. Sci. Sinter. 2024. OnLine-First. [Google Scholar] [CrossRef]
- Mustafa, N.N.A.; Ahmad, R.; Kamar Affendi, N.H.; Sulaiman, E.; Khushaini, M.A.A.; Ismail, M.; The, L.K.; Salleh, M.Z. In vitro evaluation of cytotoxicity and genotoxicity of porous nickel titanium dental implants produced by metal injection molding technique. J. Biomed. Mater. Res. B, Appl. Biomater. 2024, 112, e35306. [Google Scholar] [CrossRef]
- Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles—A systematic analytical review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef]
- Lazić, M.M.; Mitić, D.; Radović, K.; Đorđević, I.; Majerič, P.; Rudolf, R.; Grgur, B.N. Corrosion behavior of nickel–titanium continuous-casted alloys. Metals 2024, 14, 88. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Cinca, N.; Dosta, S.; Benedetti, A.V. Corrosion behaviour of thermal sprayed nitinol coatings. Corros. Sci. 2008, 51, 171–180. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Tripi, T.R.; Rondelli, G.; Condorelli, G.G.; Cantatore, G.; Schäfer, E. Pitting corrosion resistance of nickel–titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic acid and sodium chloride solutions. J. Endod. 2008, 34, 208–211. [Google Scholar] [CrossRef]
- Semin, V.O.; D’yachenko, F.A.; Erkovich, A.V.; Ostapenko, M.G.; Chernova, A.P.; Shulepov, I.A.; Savkin, K.P.; Khabibova, E.D.; Yuzhakova, S.I.; Meinser, L.L. Characterization of corrosion properties, structure and chemistry of titanium-implanted TiNi shape memory alloy. Mater. Charact. 2023, 206, e113457. [Google Scholar] [CrossRef]
- Sun, X.T.; Kang, Z.X.; Zhang, X.L.; Jiang, H.J.; Guan, R.F.; Zhang, X.P. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution. Electrochim. Acta 2011, 56, 6389–6396. [Google Scholar] [CrossRef]
- Elshaer, R.N.; Ibrahim, K.M. Study of microstructure, mechanical properties, and corrosion behavior of as-cast Ni-Ti and Ti-6Al-4V alloys. J. Materi. Eng. Perform. 2022, 32, 7831–7845. [Google Scholar] [CrossRef]
- Lethabane, M.L.; Olubambi, P.A.; Chikwanda, H.K. Corrosion behaviour of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment. J. Mater. Res. Technol. 2015, 4, 367–376. [Google Scholar] [CrossRef]
- Hočevar, M.; Batič, B.Š.; Godec, M.; Kononenko, V.; Drobne, D.; Gregorčič, P. The interaction between the osteosarcoma cell and stainless steel surface, modified by high-fluence, nanosecond laser pulses. Surf. Coat. Technol. 2020, 394, e125878. [Google Scholar] [CrossRef]
- Sharma, N.; Jangra, K.K.; Raj, T. Fabrication of NiTi alloy: A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 232, 250–269. [Google Scholar] [CrossRef]
- Kabiri, Y.; Kermanpur, A.; Foroozmehr, A. Comparative study on microstructure and homogeneity of NiTi shape memory alloy produced by copper boat induction melting and conventional vacuum arc melting. Vacuum 2011, 86, 1073–1077. [Google Scholar] [CrossRef]
- ASTM F2063-18; Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants. ASTM International: West Conshohocken, PA, USA, 2018.
- Jiang, S.-Y.; Zhang, Y.-Q. Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression. Trans. Nonferrous Met. Soc. China 2012, 22, 90–96. [Google Scholar] [CrossRef]
- Ivanić, I.; Gojić, M.; Kožuh, S. Slitine s prisjetljivosti oblika (II. dio): Podjela, proizvodnja i primjena. Kem. U Ind. 2014, 63, 331–344. [Google Scholar] [CrossRef]
- ISO 10271:2009; Dentistry-Corrosion Test Methods for Metallic Materials. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices-Part 5: Tests for in vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Lemke, J.N.; Gallino, F.; Cresci, M.; Zilio, S.; Coda, A. Low-hysteresis shape memory alloy scale-up: DSC, XRD and microstructure analysis on heat-treated vacuum induction melted Ni-TI-CU-PD alloys. Metals 2021, 11, 1387. [Google Scholar] [CrossRef]
- Anikeev, S.G.; Artyukhova, N.V.; Shabalina, A.V.; Kulinich, S.A.; Hodorenko, V.N.; Kaftaranova, M.I.; Promakhov, V.V.; Gunter, V.E. Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic transformations. J. Alloys Compd. 2021, 900, 163559. [Google Scholar] [CrossRef]
- Gao, S.; Bodunde, O.P.; Qin, M.; Liao, W.-H.; Guo, P. Microstructure and phase transformation of nickel-titanium shape memory alloy fabricated by directed energy deposition with in-situ heat treatment. J. Alloys Compd. 2021, 898, 162896. [Google Scholar] [CrossRef]
- Hu, L.; Xue, Y.; Shi, F. Intermetallic formation and mechanical properties of Ni-Ti diffusion couples. Mater. Des. 2017, 130, 175–182. [Google Scholar] [CrossRef]
- Sun, F.; Jordan, L.; Albin, V.; Lair, V.; Ringuedé, A.; Prima, F. On the High Sensitivity of Corrosion Resistance of NiTi Stents with Respect to Inclusions: An Experimental Evidence. ACS Omega. 2020, 5, 3073–3079. [Google Scholar] [CrossRef]
- Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama, N. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot. J. Alloys Compd. 2013, 581, 344–351. [Google Scholar] [CrossRef]
- Fashu, S.; Lototskyy, M.; Davids, M.W.; Pickering, L.; Linkov, V.; Tai, S.; Renheng, T.; Fangming, X.; Fursikov, P.V.; Tarasov, B.P. A review on crucibles for induction melting of titanium alloys. Mater. Des. 2019, 186, 108295. [Google Scholar] [CrossRef]
- Frenzel, J.; Neuking, K.; Eggeler, G. Induction melting of NITI shape memory alloys-the influence of the commercial crucible graphite on alloy quality. Materialwiss. Werkst. 2004, 35, 352–358. [Google Scholar] [CrossRef]
- Gaber, G.A.; Mohamed, L.Z.; Järvenpää, A.; Hamada, A. Enhancement of corrosion protection of AISI 201 austenitic stainless steel in acidic chloride solutions by Ce-doped TiO2 coating. Surf. Coat. Tech. 2021, 423, 127618. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review. Prot. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy-A tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Singh, M.B.; Gabriel, B.I.; Venkatraman, M.S.; Cole, I.S.; Moorthy, C.G.; Emmanuel, B. Theory of impedance for initial corrosion of metals under a thin electrolyte layer: A coupled charge transfer-diffusion model. J. Chem. Sci. 2022, 134, 32. [Google Scholar] [CrossRef]
- Rivera-Grau, L.M.; Casales, M.; Regla, I.; Ortega-Toledo, D.M.; Ascencio-Gutierrez, J.A.; Porcayo-Calderon, J.; Martinez-Gomez, L. Effect of organic corrosion inhibitors on the corrosion performance of 1018 carbon steel in 3% NaCl solution. Int. J. Electrochem. Sci. 2013, 8, 2491–2503. [Google Scholar] [CrossRef]
- Sittig, C.; Textor, M.; Spencer, N.D.; Wieland, M.; Vallotton, P.H. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J. Mater. Sci. Mater. Med. 1999, 10, 35–46. [Google Scholar] [CrossRef]
- Pantaroto, H.N.; Cordeiro, J.M.; Pereira, L.T.; De Almeida, A.B.; Nociti Junior, F.H.; Rangel, E.C.; Neto, N.F.A.; Da Silva, J.H.D.; Barão, V.A.R. Sputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implants. Mater. Sci. Eng. C 2020, 119, 111638. [Google Scholar] [CrossRef]
- Gao, S.; Weng, F.; Bodunde, O.P.; Qin, M.; Liao, W.-H.; Guo, P. Spatial characteristics of nickel-titanium shape memory alloy fabricated by continuous directed energy deposition. J. Manuf. Process. 2021, 71, 417–428. [Google Scholar] [CrossRef]
- Chen, G.; Liu, S.; Huang, C.; Ma, Y.; Li, Y.; Zhang, B.; Gao, L.; Zhang, B.; Wang, P.; Qu, X. In-situ phase transformation and corrosion behavior of TiNi via LPBF. Corr. Sci. 2022, 203, 110348. [Google Scholar] [CrossRef]
- Rincic Mlinaric, M.; Durgo, K.; Katic, V.; Spalj, S. Cytotoxicity and oxidative stress induced by nickel and titanium ions from dental alloys on cells of gastrointestinal tract. Toxicol. Appl. Pharmacol. 2019, 383, 114784. [Google Scholar] [CrossRef]
- Katić, V.; Ćurković, L.; Bošnjak, M.U.; Špalj, S. Determination of corrosion rate of orthodontic wires based on nickel-titanium alloy in artificial saliva. Materialwiss. Werkst. 2014, 45, 99–105. [Google Scholar] [CrossRef]
- Ryhänen, J.; Niemi, E.; Serlo, W.; Niemelä, E.; Sandvik, P.; Pernu, H.; Salo, T. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J. Biomed. Mater. Res. 1997, 35, 451–457. [Google Scholar] [CrossRef]
- Ng, K.W.; Man, H.C. Laser surface modification of nickel–titanium (NiTi) alloy biomaterials to improve biocompatibility and corrosion resistance. In Elsevier eBooks; Woodhead Publishing: Cambridge, UK, 2012; pp. 124–151. [Google Scholar] [CrossRef]
- Du, T.; Liu, J.; Dong, J.; Xie, H.; Wang, X.; Yang, X.; Yang, Y. Multifunctional coatings of nickel-titanium implant toward promote osseointegration after operation of bone tumor and clinical application: A review. Front. Bioeng. Biotechnol. 2024, 12, 1325707. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. [Google Scholar] [CrossRef]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed Cell-Death by ferroptosis: Antioxidants as mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef]
- Ibrahim, K.M.; Safwat, E.M.; Ghayad, I.M.; El-Hadad, S. In-vitro biocompatibility evaluation of cast Ni–Ti alloy produced by vacuum arc melting technique for biomedical and dental applications. Chem. Pap. 2022, 77, 847–858. [Google Scholar] [CrossRef]
- Garcia-Ramirez, M.J.; Lopez-Sesenes, R.; Rosales-Cadena, I.; Gonzalez-Rodriguez, J.G. Corrosion behaviour of Ti–Ni–Al alloys in a simulated human body solution. J. Mater. Res. Technol. 2017, 7, 223–230. [Google Scholar] [CrossRef]
- Mine Toker, S. Surface Property Dependent Biocompatibility Analysis of NiTi Shape Memory Alloys to be used in Root Canal Shaping Applications. Int. J. Dent. Oral Sci. 2018, 1–4. [Google Scholar] [CrossRef]
- Bogdanski, D.; Köller, M.; Müller, D.; Muhr, G.; Bram, M.; Buchkremer, H.P.; Stöver, D.; Choi, J.; Epple, M. Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials 2002, 23, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
Eocp V | Rp kΩ cm2 | jocp μA cm−2 | Ecorr V | jcorr nA cm−2 | jpas μA cm−2 | Epit V | Erp V | Rpit V |
---|---|---|---|---|---|---|---|---|
−0.430 | 72 | ~2 | −0.2 | 60 | 0.2 | 0.34 | ~0 | 0.540 |
Eocp V | Rsl Ω cm2 | Rf Ω cm2 | Cf μF cm−2 | Yo,W μS sn cm−2 | n | Rct kΩ cm2 | Yo,dl μS sn cm−2 | n | G.F 10−3 | |
---|---|---|---|---|---|---|---|---|---|---|
1. | −0.425 | 4.4 | 31.2 | 15.1 | 67 | 0.54 | 2.7 | 28.5 | 0.86 | 0.097 |
2. | −0.462 | 4.2 | 29.4 | 3.75 | 50 | 0.55 | 2.0 | 48 | 0.83 | 0.083 |
Spectra | Ti wt.% | Ni wt.% | C wt.% | Si wt.% | Al wt.% | Cl wt.% | Ti at.% | Ni at.% | Phase |
---|---|---|---|---|---|---|---|---|---|
S1a | 42.4 | 52.9 | 4.6 | 0 | 0 | 0 | 50.6 | 49.4 | TiNi |
S2a | 57.2 | 38.3 | 3 | 1.5 | 0 | 0 | 64.7 | 35.3 | Ti2Ni |
S2b | 42.5 | 54.2 | 3.3 | 0 | 0 | 0 | 49.0 | 51.0 | TiNi |
S1c | 41.2 | 52.7 | 3.6 | 0 | 0 | 0 | 48.9 | 51.1 | TiNi |
S1c | 42.1 | 54.3 | 5.4 | 0 | 0.3 | 0 | 48.7 | 51.3 | TiNi |
S1d | 37.5 | 50.1 | 7.6 | 0 | 0.5 | 0.2 | 47.8 | 52.2 | TiNi |
S2d | 42.5 | 54.0 | 3.4 | 0 | 0 | 0 | 49.0 | 51.0 | TiNi |
Solution | Nickel (Ni) | Titanium (Ti) |
---|---|---|
DMEM | <0.5 | <0.5 |
TiNi 24 h | 1.05 ± 0.28 | 0.84 ± 0.46 |
TiNi 48 h | <0.5 | 1.74 ± 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miličić Lazić, M.; Mitić, D.; Dojčinović, B.; Lazić, M.; Popović, A.S.; Grgur, B.N. Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys. Metals 2025, 15, 758. https://doi.org/10.3390/met15070758
Miličić Lazić M, Mitić D, Dojčinović B, Lazić M, Popović AS, Grgur BN. Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys. Metals. 2025; 15(7):758. https://doi.org/10.3390/met15070758
Chicago/Turabian StyleMiličić Lazić, Minja, Dijana Mitić, Biljana Dojčinović, Marko Lazić, Aleksandra S. Popović, and Branimir N. Grgur. 2025. "Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys" Metals 15, no. 7: 758. https://doi.org/10.3390/met15070758
APA StyleMiličić Lazić, M., Mitić, D., Dojčinović, B., Lazić, M., Popović, A. S., & Grgur, B. N. (2025). Determination of the Corrosion and Biocompatibility Properties of As-Cast TiNi Alloys. Metals, 15(7), 758. https://doi.org/10.3390/met15070758