Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses
Abstract
1. Introduction
2. Results
2.1. Analysis of Variance
2.2. Mean Performance for Seed Yield, Seed Size and Shape Parameters
2.3. Mean Performance of Nutritional Quality and Micronutrient Bioavailability
2.4. Correlation Between Seed Yield, Seed Size/Shape, and Nutritional Quality Traits
2.5. Principal Component Analysis (PCA) of Lentil Genotypes Across Environments
2.6. GGE Biplots Based Analysis
2.6.1. Mean Vs. Stability
2.6.2. Ranking Genotypes
2.6.3. Which-Won-Where and Mega-Environment Identification
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Field Experiment
4.3. Mineral Concentration
4.4. Protein Concentration
4.5. Phytic Acid Concentration
4.6. Phytic Acid/Iron and Phytic Acid/Zinc Molar Ratios
4.7. Seed Size and Seed Shape Parameters
4.8. Cooking Time
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Sokhansanj, S.; Sosulski, F.W. Moisture-Absorption Characteristics of Laird Lentils and Hardshell Seeds. Cereal Chem. 1994, 71, 423–427. [Google Scholar]
- Wood, J.A. Evaluation of Cooking Time in Pulses: A Review. Cereal Chem. 2017, 94, 32–48. [Google Scholar] [CrossRef]
- FAOSTAT Food and Agriculture Organization Corporate Statistical Database. Available online: https://www.fao.org/faostat (accessed on 4 January 2025).
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W. Impact of Climate Change on Agricultural Production; Issues, Challenges, and Opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Erskine, W.; Sarker, A.; Kumar, S. Crops That Feed the World 3. Investing in Lentil Improvement toward a Food Secure World. Food Secur. 2011, 3, 127–139. [Google Scholar] [CrossRef]
- Kumar, S.; Barpete, S.; Kumar, J.; Gupta, P.; Sarker, A. Global Lentil Production: Constraints and Strategies. SATSA Mukhapatra-Annu. Tech. 2013, 17, 1–13. [Google Scholar]
- Jitendra Kumar, J.K.; Choudhary, A.K.; Gupta, D.S.; Shiv Kumar, S.K. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int. J. Mol. Sci. 2019, 20, 2971. [Google Scholar] [CrossRef]
- Choukri, H.; El Haddad, N.; Aloui, K.; Hejjaoui, K.; El-Baouchi, A.; Smouni, A.; Thavarajah, D.; Maalouf, F.; Kumar, S. Effect of High Temperature Stress during the Reproductive Stage on Grain Yield and Nutritional Quality of Lentil (Lens Culinaris Medikus). Front. Nutr. 2022, 9, 857469. [Google Scholar] [CrossRef]
- El Haddad, N.; Choukri, H.; Ghanem, M.E.; Smouni, A.; Mentag, R.; Rajendran, K.; Hejjaoui, K.; Maalouf, F.; Kumar, S. High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil. Plants 2021, 11, 95. [Google Scholar] [CrossRef]
- Choukri, H.; Hejjaoui, K.; El-Baouchi, A.; El Haddad, N.; Smouni, A.; Maalouf, F.; Thavarajah, D.; Kumar, S. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil (Lens Culinaris Medikus). Front. Nutr. 2020, 7, 596307. [Google Scholar] [CrossRef]
- Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Impact of Heat Stress during Seed Filling on Seed Quality and Seed Yield in Lentil (Lens Culinaris Medikus) Genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, A.; Dikshit, H.K.; Mishra, G.P.; Aski, M.; Meena, M.C.; Kumar, S. Genetic Dissection of Grain Iron and Zinc Concentrations in Lentil (Lens Culinaris Medik.). J. Genet. 2019, 98, 1–14. [Google Scholar] [CrossRef]
- Shrestha, R.; Rizvi, A.H.; Sarker, A.; Darai, R.; Paneru, R.B.; Vandenberg, A.; Singh, M. Genotypic Variability and Genotype× Environment Interaction for Iron and Zinc Content in Lentil under Nepalese Environments. Crop Sci. 2018, 58, 2503–2510. [Google Scholar] [CrossRef]
- Darai, R.; Sarker, A.; Pandey, M.P.; Dhakal, K.; Kumar, S.; Sah, R. Genetic Variability and Genotype X Environment Interactions Effect on Grain Iron (Fe) and Zinc (Zn) Concentration in Lentils and Their Characterization under Terai Environments of Nepal. Adv. Nutr. Food Sci. 2020, 5, 1–12. [Google Scholar] [CrossRef]
- Gupta, S.; Das, S.; Dikshit, H.K.; Mishra, G.P.; Aski, M.S.; Bansal, R.; Tripathi, K.; Bhowmik, A.; Kumar, S. Genotype by Environment Interaction Effect on Grain Iron and Zinc Concentration of Indian and Mediterranean Lentil Genotypes. Agronomy 2021, 11, 1761. [Google Scholar] [CrossRef]
- Chen, C.; Etemadi, F.; Franck, W.; Franck, S.; Abdelhamid, M.T.; Ahmadi, J.; Mohammed, Y.A.; Lamb, P.; Miller, J.; Carr, P.M. Evaluation of Environment and Cultivar Impact on Lentil Protein, Starch, Mineral Nutrients, and Yield. Crop Sci. 2022, 62, 893–905. [Google Scholar] [CrossRef]
- Sen Gupta, D.; Kumar, J.; Barpate, S.; Parihar, A.K.; Chandra, A.; Roy, A.; Djalovic, I. Lentils (Lens Culinaris Medik): Nutritional Profile and Biofortification Prospects BT-Compendium of Crop Genome Designing for Nutraceuticals. In Compendium of Crop Genome Designing for Nutraceuticals; Kole, C., Ed.; Springer Nature Singapore: Singapore, 2023; pp. 1–27. [Google Scholar] [CrossRef]
- Sinha, R.; Pal, A.K.; Singh, A.K. Physiological, Biochemical and Molecular Responses of Lentil (Lens Culinaris Medik.) Genotypes under Drought Stress. Indian J. Plant Physiol. 2018, 23, 772–784. [Google Scholar] [CrossRef]
- Tahir, A.; Tahir, Z.; Iqbal, M.J.; Bibi, Z.; Chaudhary, M.; Azam, I.; Hamid, F.; Rehman, M.; Sultana, R. Screening of Lentil (Lens Culinaris Medik.) Genotypes for Drought Tolerance at Seedling Stage under Different Levels of Drought Stress. Policy Res. J. 2024, 2, 1179–1187. [Google Scholar] [CrossRef]
- Thavarajah, P.; Thavarajah, D.; Vandenberg, A. Low Phytic Acid Lentils (Lens Culinaris L.): A Potential Solution for Increased Micronutrient Bioavailability. J. Agric. Food Chem. 2009, 57, 9044–9049. [Google Scholar] [CrossRef]
- Abo-Hegazy, S.R.E.; Selim, T.; Ashrie, A.A.M. Genotype× Environment Interaction and Stability Analysis for Yield and Its Components in Lentil. J. Plant Breed. Crop Sci 2013, 5, 85–90. [Google Scholar] [CrossRef]
- Dehghani, H.; Sabaghpour, S.H.; Sabaghnia, N. Genotype × Environment Interaction for Grain Yield of Some Lentil Genotypes and Relationship among Univariate Stability Statistics. Spanish J. Agric. Res. 2008, 6, 385–394. [Google Scholar] [CrossRef]
- Yadav, N.K.; Ghimire, S.K.; Sah, B.P.; Sarker, A.; Shrestha, S.M.; Sah, S.K. Genotype × Environment Interaction and Stability Analysis in Lentil (Lens Culinaris Medik.). Int. J. Environ. Agric. Biotechnol. 2016, 1, 238539. [Google Scholar] [CrossRef]
- Tziouvalekas, M.; Tigka, E.; Kargiotidou, A.; Beslemes, D.; Irakli, M.; Pankou, C.; Arabatzi, P.; Aggelakoudi, M.; Tokatlidis, I.; Mavromatis, A. Seed Yield, Crude Protein and Mineral Nutrients of Lentil Genotypes Evaluated across Diverse Environments under Organic and Conventional Farming. Plants 2022, 11, 3328. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Daun, J.K.; Malcolmson, L.J. Relationship between Physicochemical and Cooking Properties, and Effects of Cooking on Antinutrients, of Yellow Field Peas (Pisum Sativum). J. Sci. Food Agric. 2003, 83, 1228–1237. [Google Scholar] [CrossRef]
- Ndungu, K.E.; Emmambux, M.N.; Minnaar, A. Micronisation and Hot Air Roasting of Cowpeas as Pretreatments to Control the Development of Hard-to-cook Phenomenon. J. Sci. Food Agric. 2012, 92, 1194–1200. [Google Scholar] [CrossRef]
- Bansal, R.; Bana, R.S.; Dikshit, H.K.; Srivastava, H.; Priya, S.; Kumar, S.; Aski, M.S.; Kumari, N.K.P.; Gupta, S.; Kumar, S. Seed Nutritional Quality in Lentil (Lens Culinaris) under Different Moisture Regimes. Front. Nutr. 2023, 10, 1141040. [Google Scholar] [CrossRef]
- Thavarajah, P.; See, C.-T.; Vandenberg, A. Phytic Acid and Fe and Zn Concentration in Lentil (Lens Culinaris L.) Seeds Is Influenced by Temperature during Seed Filling Period. Food Chem. 2010, 122, 254–259. [Google Scholar] [CrossRef]
- Alam, M.A.; Sarker, Z.I.; Farhad, M.; Hakim, M.A.; Barma, N.C.D.; Hossain, M.I.; Rahman, M.M.; Islam, R. Yield Stability of Newly Released Wheat Varieties in Multi-Environments of Bangladesh. Int. J. Plant Soil Sci. 2015, 6, 150–161. [Google Scholar] [CrossRef]
- Yan, W.; Pageau, D.; Frégeau-Reid, J.; Durand, J. Assessing the Representativeness and Repeatability of Test Locations for Genotype Evaluation. Crop Sci. 2011, 51, 1603–1610. [Google Scholar] [CrossRef]
- Ghaffar, M.; Asghar, M.J.; Shahid, M.; Hussain, J. Estimation of G× E Interaction of Lentil Genotypes for Yield Using AMMI and GGE Biplot in Pakistan. J. Soil Sci. Plant Nutr. 2023, 23, 2316–2330. [Google Scholar] [CrossRef]
- Hossain, M.A.; Sarker, U.; Azam, M.G.; Kobir, M.S.; Roychowdhury, R.; Ercisli, S.; Ali, D.; Oba, S.; Golokhvast, K.S. Integrating BLUP, AMMI, and GGE Models to Explore GE Interactions for Adaptability and Stability of Winter Lentils (Lens Culinaris Medik.). Plants 2023, 12, 2079. [Google Scholar] [CrossRef]
- Subedi, M.; Khazaei, H.; Arganosa, G.; Etukudo, E.; Vandenberg, A. Genetic Stability and Genotype× Environment Interaction Analysis for Seed Protein Content and Protein Yield of Lentil. Crop Sci. 2021, 61, 342–356. [Google Scholar] [CrossRef]
- Abbas, G.; Asghar, M.J.; Shahid, M.; Hussain, J.; Akram, M.; Ahmad, F. Yield Performance of Some Lentil Genotypes over Different Environments. Agrosystems, Geosci. Environ. 2019, 2, 1–3. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M.M. A Manual Colorimetric Procedure for Measuring Ammonium Nitrogen in Soil and Plant Kjeldahl Digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Megazyme Phytic Acid Assay Kit. Available online: https://www.megazyme.com/phytic-acid-assay-kit (accessed on 10 January 2023).
Source of Variation | df | SY | HSW | SL | SW | SA | SP | SD |
---|---|---|---|---|---|---|---|---|
Marchouch | ||||||||
G | 35 | 3.06 ** | 2.03 ** | 0.70 ** | 0.84 ** | 32.81 ** | 10.49 ** | 0.65 ** |
T | 2 | 99.57 ** | 56.47 ** | 0.17 ** | 0.37 ** | 2.67 ** | 0.76 ** | 0.17 ** |
G × T | 70 | 0.83 ** | 0.65 ** | 0.63 ** | 0.65 ** | 34.46 ** | 10.59 ** | 0.62 ** |
Residual | 107 | 1.91 × 10−3 | 9.05 × 10−4 | 1.95 × 10−3 | 1.93 × 10−3 | 3.20 × 10−2 | 3.17 × 10−2 | 2.13 × 10−3 |
Annoceur | ||||||||
G | 35 | 1.33 ** | 0.89 ** | 0.26 ns | 0.23 ns | 16.00 ns | 10.85 ** | 0.30 ns |
T | 2 | 34.64 ** | 11.21 ** | 0.03 ns | 1.02 * | 12.28 ns | 32.35 ** | 0.16 ns |
G × T | 70 | 1.18 ** | 0.76 ** | 0.33 ns | 0.32 * | 19.56 * | 11.80 ** | 0.38 * |
Residual | 107 | 0.23 | 0.19 | 0.25 | 0.20 | 10.67 | 3.22 | 0.21 |
Combined | ||||||||
G | 35 | 2.09 ** | 1.21 ** | 0.42 ** | 0.46 ** | 21.12 ** | 9.73 ** | 0.44 ** |
L | 1 | 44.33 ** | 33.48 ** | 2.86 ** | 0.27 ns | 109.29 ** | 93.75 ** | 3.14 ** |
T | 2 | 128.66 ** | 60.89 ** | 0.05 ns | 0.09 ns | 19.69 ** | 27.1 ns | 0.46 ns |
G × L | 35 | 2.25 ** | 1.70 ** | 0.50 ** | 0.60 ** | 26.27 ** | 11.15 ** | 0.49 ** |
G × T | 70 | 1.10 ** | 0.52 * | 0.53 ** | 0.54 ** | 28.29 ** | 11.07 ** | 0.53 ** |
Residual | 272 | 0.36 | 0.35 | 0.19 | 0.19 | 10.31 | 4.19 | 0.19 |
Source of Variation | df | Fe | PA/Fe | Zn | PA | PA/Zn | CP | CT |
---|---|---|---|---|---|---|---|---|
Marchouch | ||||||||
G | 35 | 3.01 ** | 13.50 ** | 0.54 ** | 0.03 ** | 14.15 ** | 2.08 ** | 11.47 ** |
T | 2 | 82.31 ** | 1066.61 ** | 8.09 ** | 2.65 ** | 1512.29 ** | 290.32 ** | 416.32 ** |
G × T | 70 | 0.91 ** | 3.66 ** | 0.37 ** | 0.01 ** | 7.67 ** | 1.28 ** | 3.73 ** |
Residual | 107 | 6.10 × 10−3 | 1.80 × 10−2 | 3.34 × 10−3 | 1.13 × 10−4 | 4.03 × 10−2 | 9.45 × 10−2 | 6.93 × 10−3 |
Annoceur | ||||||||
G | 35 | 2.71 ** | 9.70 ** | 0.18 ns | 0.03 ** | 13.64 ** | 4.99 ** | 7.55 ** |
T | 2 | 187.61 ** | 770.12 ** | 2.43 ** | 0.78 ** | 570.28 ** | 787.32 ** | 424.1 ** |
G × T | 70 | 0.65 ** | 2.89 ** | 0.29 * | 0.01 ** | 7.23 * | 2.16 * | 3.81 ** |
Residual | 107 | 0.20 | 1.02 | 0.17 | 0.00 | 4.90 | 1.44 | 1.33 |
Combined | ||||||||
G | 35 | 3.41 ** | 14.27 ** | 0.36 ** | 0.03 ** | 16.38 ** | 3.68 ** | 12.59 ** |
L | 1 | 65.02 ** | 44.08 ** | 28.45 ** | 0.09 ** | 580.86 ** | 682.88 ** | 33.68 ** |
T | 2 | 255.83 ** | 1839.26 ** | 9.40 ** | 3.24 ** | 1991.62 ** | 1021.85 ** | 860.99 ** |
G × L | 35 | 2.62 ** | 9.84 ** | 0.37 ** | 0.03 ** | 12.07 ** | 3.78 ** | 6.17 ** |
G × T | 70 | 0.96 ** | 4.14 ** | 0.31 ** | 0.02 ** | 8.68 ** | 1.65 ns | 4.44 ** |
Residual | 272 | 0.34 | 1.02 | 0.15 | 0.01 | 3.95 | 1.67 | 1.31 |
E | Descreptive | SY | HSW | SL | SW | SA | SP | SD |
---|---|---|---|---|---|---|---|---|
E1 | Range | 1.04–6.87 | 0.69–4.9 | 0.61–5.83 | 0.61–5.41 | 4.36–24.39 | 2.46–21.91 | 0.61–5.47 |
Mean ± SD | 5.13 a ± 2.97 | 3.50 a ± 1.8 | 4.70 a ± 3.57 | 4.43 a ± 3.27 | 16.16 a ± 8.85 | 17.59 a ± 12.98 | 4.48 a ± 3.35 | |
E2 | Range | 0.82–5.66 | 0.79–4.11 | 0.52–6.05 | 0.56–5.63 | 3.79–25.27 | 2.11–22.76 | 0.50–5.70 |
Mean ± SD | 3.91 b ± 2.42 | 2.55 b ± 1.1 | 4.6 b ± 3.81 | 4.29 b ± 3.19 | 15.81 b ± 10.43 | 17.39 b ± 14.04 | 4.39 b ± 3.64 | |
E3 | Range | 1.02–4.58 | 0.89–3.2 | 3.73–5.92 | 2.99–5.56 | 9.98–25.39 | 13.77–22.26 | 3.5–5.59 |
Mean ± SD | 2.78 c ± 0.77 | 1.73 c ± 0.74 | 4.65 c ± 0.58 | 4.35 c ± 0.62 | 15.86 b ± 4.18 | 17.46 c ± 2.31 | 4.41 c ± 0.57 | |
E4 | Range | 2.36–5.86 | 1.07–3.70 | 3.96–5.71 | 3.38–5.25 | 10.88–24.57 | 14.55–27.54 | 3.40–5.58 |
Mean ± SD | 4.04 a ± 0.95 | 2.46 a ± 0.72 | 4.78 a ± 0.46 | 4.25 b ± 0.47 | 17.45 a ± 3.97 | 19.27 a ± 3.77 | 4.65 a ± 0.56 | |
E5 | Range | 1.76–4.73 | 1.05–3.74 | 4.35–5.57 | 4.02–5.20 | 13.30–22.13 | 16.11–20.93 | 4.10–5.30 |
Mean ± SD | 3.22 b ± 0.69 | 1.93 b ± 0.66 | 4.83 a ± 0.34 | 4.48 a ± 0.32 | 16.70 b ± 2.41 | 17.99 b ± 1.31 | 4.57 a ± 0.32 | |
E6 | Range | 1.05–4.45 | 0.40–2.51 | 4.02–5.78 | 3.73–5.39 | 11.41–23.89 | 14.88–21.72 | 3.80–5.49 |
Mean ± SD | 2.52 c ± 0.82 | 1.60 c ± 0.63 | 4.81 a ± 0.44 | 4.47 a ± 0.42 | 16.62 b ± 3.10 | 17.95 b ± 1.70 | 4.56 a ± 0.42 |
Parameter | Merchouch (ICARDA) | Annoceur (INRA) |
---|---|---|
Coordinates | 33.36° N, 6.43° W | 33.68° N, 4.85° W |
Altitude | 390 m | 1350 m |
Climate | Semi-arid | Cold and wet |
Annual Average Temperature | 16 °C | 13 °C |
Annual Average Rainfall | 323 mm | 337.4 mm |
Soil Type | Vertisol, nitrogen-deficient | Gravelly, calcareous clay |
Soil pH | 8.50 | 8.35 |
Code | Location | Description | Irrigation Timing |
---|---|---|---|
E1 | Merchouch | Normal planting | Regular irrigation as per crop needs |
E2 | Merchouch | Late planting + irrigation | Irrigation maintained during reproductive stage (Field capacity) |
E3 | Merchouch | Late planting + no irrigation | No irrigation during reproductive stage (Drought stress) |
E4 | Annoceur | Normal planting | Regular irrigation as per crop needs |
E5 | Annoceur | Late planting + irrigation | Irrigation maintained regularly during reproductive stage (Field capacity) |
E6 | Annoceur | Late planting + no irrigation | No irrigation during reproductive stage (Drought stress) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choukri, H.; Aloui, K.; El Haddad, N.; Hejjaoui, K.; Smouni, A.; Kumar, S. Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses. Plants 2025, 14, 2019. https://doi.org/10.3390/plants14132019
Choukri H, Aloui K, El Haddad N, Hejjaoui K, Smouni A, Kumar S. Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses. Plants. 2025; 14(13):2019. https://doi.org/10.3390/plants14132019
Chicago/Turabian StyleChoukri, Hasnae, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni, and Shiv Kumar. 2025. "Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses" Plants 14, no. 13: 2019. https://doi.org/10.3390/plants14132019
APA StyleChoukri, H., Aloui, K., El Haddad, N., Hejjaoui, K., Smouni, A., & Kumar, S. (2025). Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses. Plants, 14(13), 2019. https://doi.org/10.3390/plants14132019