Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,719)

Search Parameters:
Keywords = physiological signals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4226 KB  
Article
Integrating miRNA, mRNA, and Targeted Metabolomics Analyses to Explore the Regulatory Mechanism of Cardiac Remodeling in Yili Horses
by Tongliang Wang, Xixi Yang, Wanlu Ren, Jun Meng, Xinkui Yao, Hongzhong Chu, Runchen Yao, Manjun Zhai and Yaqi Zeng
Biology 2025, 14(11), 1535; https://doi.org/10.3390/biology14111535 (registering DOI) - 1 Nov 2025
Abstract
Training not only enhances the athletic performance of horses but also improves cardiac structure and function, strengthens cardiovascular adaptability, and reduces the risk of cardiovascular diseases. However, the consequences of training on equine cardiac structure and function remain unclear. This study investigated the [...] Read more.
Training not only enhances the athletic performance of horses but also improves cardiac structure and function, strengthens cardiovascular adaptability, and reduces the risk of cardiovascular diseases. However, the consequences of training on equine cardiac structure and function remain unclear. This study investigated the morphological, functional, genetic, and metabolic changes in the hearts of Yili horses divided into three groups: high athletic performance (agility group, AG), low athletic performance (ordinary group, OG), and untrained (untrained group, UN). The results showed remodeling of the cardiac structure and physiological adaptations in AG and OG compared to UN groups, with differences between AG and OG primarily in the left ventricle. To explore the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses (particularly GO and KEGG pathway analyses) were performed to assess differences in gene expression and metabolite levels among the three groups. Our results show that miR-1842, miR-671, miR-106b and miR-18a were differentially expressed in the trained groups (AG group and OG group) compared with the control group that did not receive training. These regulatory factors would regulate PFKFB3 to affect the glycolytic activity mediated by HIF-1, there by promoting glycolysis and changing lactate level. This, in turn, would positively feedback to stabilize HIF-1, thus forming a closed loop for the reprogramming of myocardial energy metabolism. In the AG group, positive effects of cAMP signaling were noticeable. In conclusion, our findings offer new insights into physiological cardiac remodeling in Yili horses by highlighting genetic and metabolomic changes resulting from exercise training. Full article
Show Figures

Figure 1

13 pages, 2324 KB  
Review
The Radical Pair Mechanism and Its Quantum Role in Plant Reactive Oxygen Species Production Under Hypomagnetic Fields
by Massimo E. Maffei
Quantum Rep. 2025, 7(4), 52; https://doi.org/10.3390/quantum7040052 (registering DOI) - 1 Nov 2025
Abstract
The Earth’s geomagnetic field (GMF) is a fundamental environmental signal for plants, with its perception rooted in quantum biology. Specifically, the radical pair mechanism (RPM) explains how this weak force influences electron spin states in metabolic pathways, providing a framework for its profound [...] Read more.
The Earth’s geomagnetic field (GMF) is a fundamental environmental signal for plants, with its perception rooted in quantum biology. Specifically, the radical pair mechanism (RPM) explains how this weak force influences electron spin states in metabolic pathways, providing a framework for its profound biological impact. Research shows that a hypomagnetic field (hMF) directly reduces the production of reactive oxygen species (ROS), creating a quantum signature in plants. This is a counterintuitive finding, as it suggests the plant perceives less oxidative stress and, in response, downregulates its antioxidant defenses. This multi-level effect, from a quantum trigger to molecular and metabolic changes, ultimately affects the plant’s growth and phenotype. This review suggests a possible link between the GMF and plant health, identifying the GMF as a potential physiological modulator. Manipulating the magnetic field could therefore be a novel strategy for improving crop resilience and growth. However, the fact that some effects cannot be fully explained by the RPM suggests other quantum mechanisms are involved, paving the way for future research into these undiscovered processes and their potential inheritance across generations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
Show Figures

Figure 1

18 pages, 9628 KB  
Article
i2 Signaling Regulates Neonatal Respiratory Adaptation
by Veronika Leiss, Katja Pexa, Andreas Nowacki, James P. Bridges, Benedikt Duckworth-Mothes, Susanne Ammon-Treiber, Ana Novakovic, Franziska Zeyer, Hartwig Wolburg, Petra Fallier-Becker, Roland P. Piekorz, Matthias Schwab, Letizia Quintanilla-Martínez, Sandra Beer-Hammer and Bernd Nürnberg
Int. J. Mol. Sci. 2025, 26(21), 10655; https://doi.org/10.3390/ijms262110655 (registering DOI) - 1 Nov 2025
Abstract
Heterotrimeric Gi proteins are crucial modulators of G protein-coupled receptor signaling, with Gαi2 ubiquitously expressed and implicated in diverse physiological processes. Previous reports described partial lethality in Gnai2-deficient mice, but the timing and mechanism of death remained unclear. Here, we [...] Read more.
Heterotrimeric Gi proteins are crucial modulators of G protein-coupled receptor signaling, with Gαi2 ubiquitously expressed and implicated in diverse physiological processes. Previous reports described partial lethality in Gnai2-deficient mice, but the timing and mechanism of death remained unclear. Here, we demonstrate that impaired neonatal respiratory adaptation contributes to mortality in Gnai2-deficient neonates. Despite normal Mendelian distribution at birth and no overt malformations, at least 20% of the expected Gnai2-deficient neonates died within minutes after birth, displaying abnormal breathing, cyanosis, and features resembling neonatal respiratory distress syndrome (RDS). Histological and ultrastructural analyses revealed reduced alveolar surface area, thickened septa, increased mesenchymal tissue, and impaired surfactant ultrastructure, despite unaltered alveolar surfactant phospholipid levels. These findings suggest that Gαi2 modulates the structural deployment and functional organization of surfactant within alveoli, although the incomplete phenotype and survival of some neonates indicate a regulatory rather than indispensable role of Gαi2. Our data underscore the complexity of neonatal respiratory adaptation and highlight potential systemic and intercellular mechanisms underlying alveolar stabilization. Full article
Show Figures

Figure 1

26 pages, 23199 KB  
Article
Development and Validation of a Multimodal Wearable Belt for Abdominal Biosignal Monitoring with Application to Irritable Bowel Syndrome
by Amir Mohammad Karimi Forood, Sibi M. Pandian, Riley Q. McNaboe, Thuany De Carvalho Lachos, Daniel Octavio Lantigua and Hugo F. Posada-Quintero
Micromachines 2025, 16(11), 1255; https://doi.org/10.3390/mi16111255 (registering DOI) - 1 Nov 2025
Abstract
Visceral pain in Irritable Bowel Syndrome (IBS) is difficult to evaluate objectively due to its complex physiological nature and lack of reliable biomarkers. Given the complexity of IBS, a multimodal physiological monitoring approach, combining electrodermal activity (EDA), electrocardiogram (ECG), and surface electromyography (sEMG), [...] Read more.
Visceral pain in Irritable Bowel Syndrome (IBS) is difficult to evaluate objectively due to its complex physiological nature and lack of reliable biomarkers. Given the complexity of IBS, a multimodal physiological monitoring approach, combining electrodermal activity (EDA), electrocardiogram (ECG), and surface electromyography (sEMG), offers a promising approach to capture the autonomic and muscular responses linked to visceral pain. However, no existing wearable device supports simultaneous EDA, ECG, and sEMG acquisition from the abdomen in a format suitable for long-term, real-world use. This study presents the development and validation of a novel wearable belt for concurrent ECG, sEMG, and EDA monitoring, with EDA measured at both the torso and wrist. The system was built using modified BITalino platforms with custom-fabricated reusable electrodes and Bluetooth connectivity for real-time smartphone display. Signal quality was validated against laboratory-grade systems in 20 healthy participants during a four-stage protocol involving cognitive, orthostatic, muscular, and combined stress tasks. Time and frequency-domain analyses showed high correlations and comparable spectral features across all modalities. The belt maintained stable skin contact even during movement-intensive tasks. By enabling anatomically targeted, multimodal data acquisition, this wearable system supports real-world visceral pain assessment in IBS and is ready for deployment in ambulatory and home-based monitoring scenarios. Full article
Show Figures

Figure 1

24 pages, 4679 KB  
Article
Gene Expression Dynamics Underlying Muscle Aging in the Hawk Moth Manduca sexta
by Avery Del Grosso, Beate Wone, Connor McMahon, Hallie Downs and Bernard W. M. Wone
Genes 2025, 16(11), 1306; https://doi.org/10.3390/genes16111306 (registering DOI) - 1 Nov 2025
Abstract
Background/Objectives: Muscle aging is a complex, dynamic process that impairs overall metabolism and physiological function. The molecular mechanisms underlying declines in muscle performance and metabolic efficiency remain poorly understood, largely due to the time and resource demands of traditional model organisms. The hawk [...] Read more.
Background/Objectives: Muscle aging is a complex, dynamic process that impairs overall metabolism and physiological function. The molecular mechanisms underlying declines in muscle performance and metabolic efficiency remain poorly understood, largely due to the time and resource demands of traditional model organisms. The hawk moth Manduca sexta offers a promising alternative, with a short adult lifespan (~10 days) and notable similarities to vertebrate muscle systems, making it well-suited for time-course molecular dissection of muscle aging. Methods: In this study, we performed high-resolution temporal analysis of muscle tissues from aging M. sexta, spanning the physiomuscular aging process from middle age to advanced age. Results: We observed decreased expression of genes involved in fatty acid β-oxidation, ATP synthase subunits, superoxide dismutase, glutathione S-transferases, and heat shock proteins. In contrast, genes associated with proteolysis, catabolic processes, insulin signaling, akirin, titin, high-affinity choline transporters, and vesicular acetylcholine transporters were increased in expression. Conclusions: These changes suggest a shift toward increased proteolysis and protein catabolism with age. Our findings support the use of M. sexta as a complementary model for muscle aging research. However, it remains unclear whether the observed gene expression changes are driven by intrinsic, sex-specific age-related muscle aging or confounded by potential starvation effects in older males. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 7136 KB  
Article
Genome-Wide Analysis Unveils the Evolutionary Impact of Allopolyploidization on the 14-3-3 Gene Family in Rapeseed (Brassica napus L.)
by Shengxing Duan and Jing Wang
Genes 2025, 16(11), 1305; https://doi.org/10.3390/genes16111305 (registering DOI) - 1 Nov 2025
Abstract
Background: Polyploidization drives the formation and evolution of angiosperms, profoundly reshaping genomic architecture and function. The 14-3-3 proteins (also known as G-box binding regulators, GRFs) are conserved signaling molecules involved in a range of physiological processes, including developmental signaling and stress responses. [...] Read more.
Background: Polyploidization drives the formation and evolution of angiosperms, profoundly reshaping genomic architecture and function. The 14-3-3 proteins (also known as G-box binding regulators, GRFs) are conserved signaling molecules involved in a range of physiological processes, including developmental signaling and stress responses. Elucidating the evolutionary trajectories of 14-3-3 genes in Brassica napus following allopolyploidization is critical for understanding polyploid crop evolution and developing molecular breeding strategies for improved stress resistance and yield. Results: In this study, forty-eight orthologous 14-3-3 genes were identified in the genome of B. napus, and twenty-two orthologous 14-3-3 genes were found in the genomes of both Brassica rapa and Brassica oleracea. Gene mapping analysis indicated that 14-3-3 genes were broadly distributed across all chromosomes; however, they exhibited significant heterogeneity. Phylogenetic tree construction revealed that 14-3-3 genes can be categorized into two groups: epsilon and non-epsilon genes. Gene structure analysis showed that most non-epsilon genes contain 3-4 exons, while most epsilon genes contain 5-7 exons. Collinearity analysis identified 36 orthologous gene pairs between the A (B. rapa) and C genomes (B. oleracea) but only 28 paralogous gene pairs within the A and C subgenomes of B. napus, indicating that some collinear 14-3-3 genes were lost during allopolyploidization. The Ka/Ks ratios (ratio of non-synonymous to synonymous substitution rate) of the 61 identified duplicated gene pairs were all less than 1, suggesting that these genes underwent purifying selection. Promoter analysis indicated that the average number of cis-acting elements in B. napus 14-3-3 genes was one more than in B. rapa and B. oleracea, implying that allopolyploidization increased the regulatory complexity of 14-3-3 genes. Tissue expression profiling demonstrated that the expression pattern of GRF2 homologs was altered after allopolyploidization. Conclusions: By systematically investigating the copy number, genomic distribution, structure, evolutionary relationships, and expression patterns of 14-3-3 genes in B. napus and its progenitors, this study enhances our understanding of how allopolyploidization promotes gene family evolution. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

28 pages, 1804 KB  
Review
The Gut Microbiota of Drosophila melanogaster: A Model for Host–Microbe Interactions in Metabolism, Immunity, Behavior, and Disease
by Kyu Hong Cho and Song Ok Kang
Microorganisms 2025, 13(11), 2515; https://doi.org/10.3390/microorganisms13112515 (registering DOI) - 31 Oct 2025
Abstract
The gut microbiota of Drosophila melanogaster offers a simplified yet powerful system to study conserved mechanisms of host–microbe interactions. Unlike the highly complex mammalian gut microbiota, which includes hundreds of species, the fly gut harbors a small and defined community dominated by Lactobacillus [...] Read more.
The gut microbiota of Drosophila melanogaster offers a simplified yet powerful system to study conserved mechanisms of host–microbe interactions. Unlike the highly complex mammalian gut microbiota, which includes hundreds of species, the fly gut harbors a small and defined community dominated by Lactobacillus and Acetobacter. Despite its low diversity, this microbiota exerts profound effects on host physiology. Commensal bacteria modulate nutrient acquisition, regulate insulin/TOR signaling, and buffer dietary imbalances to support metabolic homeostasis and growth. They also influence neural and behavioral traits, including feeding preferences, mating, and aggression, through microbial metabolites and interactions with host signaling pathways. At the immune level, microbial molecules such as peptidoglycan, acetate, uracil, and cyclic dinucleotides activate conserved pathways including Imd, Toll, DUOX, and STING, balancing antimicrobial defense with tolerance to commensals. Dysbiosis disrupts this equilibrium, accelerating aging, impairing tissue repair, and contributing to tumorigenesis. Research in Drosophila demonstrates how a low-diversity microbiota can shape systemic host biology, offering mechanistic insights relevant to human health and disease. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
19 pages, 7847 KB  
Article
Roles of GacSA and DJ41_1407 in Acinetobacter baumannii ATCC 19606
by Yee-Huan Toh, Meng-Yun Wen and Guang-Huey Lin
Int. J. Mol. Sci. 2025, 26(21), 10620; https://doi.org/10.3390/ijms262110620 (registering DOI) - 31 Oct 2025
Abstract
Two-component systems (TCSs) in bacteria are often involved in the global regulation of various physiological activities and behaviours. This study investigated the GacSA TCS and DJ41_1407 transcriptional sensor adjacent to GacA in Acinetobacter baumannii ATCC 19606. The relationship between GacS, GacA, and DJ41_1407 [...] Read more.
Two-component systems (TCSs) in bacteria are often involved in the global regulation of various physiological activities and behaviours. This study investigated the GacSA TCS and DJ41_1407 transcriptional sensor adjacent to GacA in Acinetobacter baumannii ATCC 19606. The relationship between GacS, GacA, and DJ41_1407 and their functions and signal transduction mechanisms are described. A. baumannii ATCC 19606 mutants, ∆gacS, ∆gacA, and ∆DJ41_1407, were generated using markerless mutation and cultured in LB medium, then collected for RNA sequencing. It was found that GacS, GacA, and DJ41_1407 regulate a series of genes involved in carbon metabolism. Quantitative reverse transcription PCR (qRT-PCR) results showed that DJ41_1407 and GacA may regulate the expression of adh4, ipdC, iacH, and paa. Phos-tag™ results revealed that GacS plays a more significant role in GacA phosphorylation. GacA regulated colony size and growth conditions in rich medium. Compared to the wild-type strain, the ∆gacA and ∆gacSA mutants exhibited smaller colony sizes, and mutation of the gacS, gacA, and DJ41_1407 genes also reduced bacterial virulence as determined by the Galleria mellonella infection assay. GacA also plays a crucial role in modulating antibiotic resistance, and the ∆gacADJ41_1407 mutant demonstrated greater susceptibility to antibiotics. These results highlight the multiple functions regulated by the GacSA global TCS in A. baumannii ATCC 19606. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 1905 KB  
Article
Lipidomic Screening of Marine Diatoms Reveals Release of Dissolved Oxylipins Associated with Silicon Limitation and Growth Phase
by Imanol Ulloa, Jiwoon Hwang, Matthew D. Johnson and Bethanie R. Edwards
Mar. Drugs 2025, 23(11), 424; https://doi.org/10.3390/md23110424 (registering DOI) - 31 Oct 2025
Abstract
Marine diatoms are an important group of phytoplankton that can shape marine ecosystems and global carbon cycling. When stressed, either physiologically or by grazing, diatoms release oxidized, lipid-derived signals known as oxylipins. Diatom-derived oxylipins are proposed to serve as defense and signaling chemicals [...] Read more.
Marine diatoms are an important group of phytoplankton that can shape marine ecosystems and global carbon cycling. When stressed, either physiologically or by grazing, diatoms release oxidized, lipid-derived signals known as oxylipins. Diatom-derived oxylipins are proposed to serve as defense and signaling chemicals that affect multiple components of marine ecosystems. Therefore, to elucidate the diversity of diatom-derived oxylipins produced during stress, we profiled the spectrum of dissolved lipids of five diatom species in culture under silicon limitation and across growth phases using ultra-high performance liquid chromatography coupled with high-resolution accurate mass spectrometry. In this study, we present evidence that physiological changes associated with Si-limitation elicit the extracellular release of linear oxygenated fatty acids (LOFAs) across five diatom species. For diatoms like Skeletonema japonicum and Pseudo-nitzschia multiseries, silicon limitation induced a distinct lipidomic signature driven by oxylipins known to be allelopathic. While their lipoxygenases were found to be different, S. japonicum and P. multiseries had the most similar dissolved lipidomes, suggesting alternative controls on oxylipin biosynthesis. Consequently, elevated oxylipin concentrations with silicon stress, estimated up to 5.91 µM, pose implications for diatoms at sea, potentially affecting ecosystems and biogeochemistry. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Graphical abstract

17 pages, 1478 KB  
Review
From Biomechanics to Bioinnovation: Emerging Applications of Piezoelectric Materials and Phenomena in Dentistry
by Wen Kang, Yuehui Wang, Dan Zhao, Hongwei Wang, Sijing Xie and Lijia Pan
Biomedicines 2025, 13(11), 2683; https://doi.org/10.3390/biomedicines13112683 (registering DOI) - 31 Oct 2025
Abstract
Teeth are the hardest organs in the human body. As mineralized structures, they possess a unique microstructure composed of orderly arranged piezoelectric materials such as hydroxyapatite crystals and collagen fibers. Teeth exhibit effective piezoelectric coefficients of approximately 1.2–1.6 pC/N. This inherent property enables [...] Read more.
Teeth are the hardest organs in the human body. As mineralized structures, they possess a unique microstructure composed of orderly arranged piezoelectric materials such as hydroxyapatite crystals and collagen fibers. Teeth exhibit effective piezoelectric coefficients of approximately 1.2–1.6 pC/N. This inherent property enables teeth to function as natural piezoelectric sensors, converting routine mechanical stresses (e.g., chewing and biting forces, typically ranging from 22.4 to 68.3 kg) into localized electrical signals. This characteristic is of great importance in dentistry and materials science, offering new perspectives into a deeper understanding of the physiological functions and pathological mechanisms of teeth. Despite promising advances, challenges regarding the clinical translation, long-term stability, and biosafety of piezoelectric materials in the oral environment remain unresolved. This review highlights the biological functions of the piezoelectric properties of teeth, discusses recent applications and notable advancements of piezoelectric materials in dentistry, and outlines the challenges and research priorities for future clinical applications. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

16 pages, 1885 KB  
Article
Integrating 3D Osteocyte Culture, Microgravity Simulation, and Fluid Flow Reveals Mechanisms of Osteocyte Mechanosensation and Calcium Signaling Altered by Disuse
by Kanglun Yu, Anik Tuladhar, Samuel Dankberg, Caihong Dai and Meghan E. McGee-Lawrence
Biomolecules 2025, 15(11), 1534; https://doi.org/10.3390/biom15111534 (registering DOI) - 31 Oct 2025
Abstract
Osteocytes translate fluid shear stress into biochemical signals critical for bone homeostasis. Here, we combined 3-dimensional (3D) osteocyte culture, microgravity simulation, fluid shear mimicking reloading after disuse, and real-time calcium signaling analysis to elucidate responses of osteocytes under different mechanical environments. Ocy454 cells [...] Read more.
Osteocytes translate fluid shear stress into biochemical signals critical for bone homeostasis. Here, we combined 3-dimensional (3D) osteocyte culture, microgravity simulation, fluid shear mimicking reloading after disuse, and real-time calcium signaling analysis to elucidate responses of osteocytes under different mechanical environments. Ocy454 cells were seeded onto 3D scaffolds and cultured under static (control) or simulated microgravity (disuse) conditions using a rotating wall vessel bioreactor. Elevated expression levels of Sost, Tnfsf11 (Rankl), and Dkk1 were detected following disuse, confirming efficacy of the microgravity model. Cell membrane integrity under mechanical challenge was evaluated by subjecting scaffold cultures to fluid shear in medium containing FITC-conjugated dextran (10 kDa). The proportion of dextran-retaining cells, indicative of transient membrane disruption and subsequent repair, was higher in microgravity-exposed osteocytes than controls, suggesting increased susceptibility to membrane damage upon reloading following disuse. Intracellular calcium signaling was assessed under a high but physiological fluid shear stress (30 dynes/cm2). Scaffolds cultured under disuse conditions demonstrated a larger sub-population of osteocytes with high calcium signaling intensity (F/Fo > 10 fold) during fluid shear. The maximum fold change in calcium signaling intensity over baseline and the duration of the peak calcium wave were greater for osteocytes cultured under disuse as compared to static controls, however the bioreactor-cultured osteocytes showed, on average, fewer calcium waves than those cultured under control conditions. Subsequent experiments demonstrated that the sub-population of osteocytes with high calcium signaling intensity following exposure to disuse were those that had experienced a transient membrane disruption event during reloading. Together, these results suggest that simulated microgravity enhances osteocyte susceptibility to formation of transient membrane damage and alters intracellular calcium signaling responses upon reloading. This integrated approach establishes a novel platform for mechanistic studies of osteocyte biology and could inform therapeutic strategies targeting skeletal disorders related to altered mechanical loading. Full article
Show Figures

Figure 1

23 pages, 673 KB  
Review
Calcium Dynamics in Astrocyte-Neuron Communication from Intracellular to Extracellular Signaling
by Agnieszka Nowacka, Maciej Śniegocki and Ewa A. Ziółkowska
Cells 2025, 14(21), 1709; https://doi.org/10.3390/cells14211709 (registering DOI) - 31 Oct 2025
Abstract
Astrocytic calcium signaling is a central mechanism of neuron-glia communication that operates across multiple spatial and temporal scales. Traditionally, research has focused on intracellular Ca2+ oscillations that regulate gliotransmitter release, ion homeostasis, and metabolic support. Recent evidence, however, reveals that extracellular calcium [...] Read more.
Astrocytic calcium signaling is a central mechanism of neuron-glia communication that operates across multiple spatial and temporal scales. Traditionally, research has focused on intracellular Ca2+ oscillations that regulate gliotransmitter release, ion homeostasis, and metabolic support. Recent evidence, however, reveals that extracellular calcium ([Ca2+]o) is not a passive reservoir but a dynamic signaling mediator capable of influencing neuronal excitability within milliseconds. Through mechanisms such as calcium-sensing receptor (CaSR) activation, ion channel modulation, surface charge effects, and ephaptic coupling, astrocytes emerge as active partners in both slow and rapid modes of communication. This dual perspective reshapes our understanding of brain physiology and disease. Disrupted Ca2+ signaling contributes to network instability in epilepsy, synaptic dysfunction in Alzheimer’s and Parkinson’s disease, and impaired maturation in neurodevelopmental disorders. Methodological advances, including Ca2+-selective microelectrodes, genetically encoded extracellular indicators, and computational modeling, are beginning to uncover the richness of extracellular Ca2+ dynamics, though challenges remain in achieving sufficient spatial and temporal resolution. By integrating classical intracellular pathways with emerging insights into extracellular signaling, this review highlights astrocytes as central architects of the ionic landscape. Recognizing calcium as both an intracellular messenger and an extracellular signaling mediator provides a unifying framework for neuron–glia interactions and opens new avenues for therapeutic intervention. Full article
Show Figures

Figure 1

17 pages, 3056 KB  
Article
Analysis of Electrical Signals in Plant Physiological Responses: A Multi-Scale Adaptive Denoising Method Based on CEEMDAN-WST
by Zihan Liu, Fangming Tian and Feng Tan
Agriculture 2025, 15(21), 2269; https://doi.org/10.3390/agriculture15212269 - 31 Oct 2025
Abstract
Plant surface electrical signals are key representations for non-destructive monitoring of changes in cell membrane potential, enabling real-time reflection of physiological responses and regulatory processes under external stimuli. However, the low-frequency and weak-amplitude characteristics of these signals make them extremely susceptible to interference [...] Read more.
Plant surface electrical signals are key representations for non-destructive monitoring of changes in cell membrane potential, enabling real-time reflection of physiological responses and regulatory processes under external stimuli. However, the low-frequency and weak-amplitude characteristics of these signals make them extremely susceptible to interference from multiple complex noise sources, such as environmental, power-line frequency, and inherent instrument noise. Existing denoising methods suffer from issues such as mode mixing and insufficient fidelity, hindering accurate extraction of genuine plant physiological information. This study proposes a novel denoising approach that integrates Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Wavelet Soft Thresholding (WST). By decomposing and filtering noise components with adaptive thresholds based on the SURE criterion, the method achieves multi-scale decomposition and effective suppression of residual noise. Applied to surface electrical signals of maize leaves, the results demonstrated a 48% reduction in permutation entropy (PE) for the entire signal. In the resting potential segment, the root mean square (RMS) decreased by 28.91%, total energy dropped by 9.3%, and waveform stability improved. For the action potential segment, the full width at half maximum (FWHM) increased to 0.747, and although the peak amplitude slightly decreased, the waveform structure remained intact. Signal energy became more concentrated within the 0–2 Hz range, achieving efficient noise suppression and high signal fidelity. This method provides a reliable preprocessing technique for elucidating plant physiological mechanisms based on surface electrical signals and holds significant potential for real-time non-destructive monitoring and early warning systems in smart agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

32 pages, 1565 KB  
Review
Muscle Mechanics in Metabolic Health and Longevity: The Biochemistry of Training Adaptations
by Mike Tabone
BioChem 2025, 5(4), 37; https://doi.org/10.3390/biochem5040037 - 30 Oct 2025
Abstract
Skeletal muscle is increasingly recognized as a dynamic endocrine organ whose secretome—particularly myokines—serves as a central hub for the coordination of systemic metabolic health, inflammation, and tissue adaptation. This review integrates molecular, cellular, and physiological evidence to elucidate how myokine signaling translates mechanical [...] Read more.
Skeletal muscle is increasingly recognized as a dynamic endocrine organ whose secretome—particularly myokines—serves as a central hub for the coordination of systemic metabolic health, inflammation, and tissue adaptation. This review integrates molecular, cellular, and physiological evidence to elucidate how myokine signaling translates mechanical and metabolic stimuli from exercise into biochemical pathways that regulate glucose homeostasis, lipid oxidation, mitochondrial function, and immune modulation. We detail the duality and context-dependence of cytokine and myokine actions, emphasizing the roles of key mediators such as IL-6, irisin, SPARC, FGF21, and BAIBA in orchestrating cross-talk between muscle, adipose tissue, pancreas, liver, bone, and brain. Distinctions between resistance and endurance training are explored, highlighting how each modality shapes the myokine milieu and downstream metabolic outcomes through differential activation of AMPK, mTOR, and PGC-1α axes. The review further addresses the hormetic role of reactive oxygen species, the importance of satellite cell dynamics, and the interplay between anabolic and catabolic signaling in muscle quality control and longevity. We discuss the clinical implications of these findings for metabolic syndrome, sarcopenia, and age-related disease, and propose that the remarkable plasticity of skeletal muscle and its secretome offers a powerful, multifaceted target for lifestyle interventions and future therapeutic strategies. An original infographic is presented to visually synthesize the complex network of myokine-mediated muscle–organ interactions underpinning exercise-induced metabolic health. Full article
Show Figures

Figure 1

36 pages, 1864 KB  
Review
Uterine Stroma-Derived Tumors and the Extracellular Matrix: A Comparative Review of Benign and Malignant Pathologies
by Maria Marmara, Thomas Vrekoussis, Fanourios Makrygiannakis, Dragana Nikitovic and Aikaterini Berdiaki
Cancers 2025, 17(21), 3501; https://doi.org/10.3390/cancers17213501 - 30 Oct 2025
Abstract
Uterine stromal-derived tumors encompass a spectrum of rare neoplasms, ranging from benign endometrial stromal nodules to aggressive high-grade endometrial stromal sarcomas and undifferentiated uterine sarcomas. The classification of these tumors has advanced through molecular and immunohistochemical profiling, but the role of the extracellular [...] Read more.
Uterine stromal-derived tumors encompass a spectrum of rare neoplasms, ranging from benign endometrial stromal nodules to aggressive high-grade endometrial stromal sarcomas and undifferentiated uterine sarcomas. The classification of these tumors has advanced through molecular and immunohistochemical profiling, but the role of the extracellular matrix (ECM) in their biology is only beginning to be understood. The ECM provides both structural support and dynamic signaling cues, regulating tumor cell proliferation, invasion, angiogenesis, and immune evasion. Altered expression of collagens, proteoglycans, glycosaminoglycans, and matricellular proteins reshapes stromal architecture and contributes to disease progression. Moreover, ECM remodeling enzymes such as matrix metalloproteinases, together with cross-linking factors, create a stiff and pro-tumorigenic microenvironment that facilitates invasion and therapeutic resistance. Furthermore, these matrix alterations intersect with angiogenesis, mechanotransduction pathways, and immune modulation. Studies to date describe the role of ECM molecules in the function of the physiological uterine tissue and data for the uterine stroma-derived tumors is scarce. This review summarizes the existing knowledge in classification, prognosis and diagnosis, and summarizes the ECM-driven mechanisms in tumors described so far, aiming to identify new and prognostic biomarkers and novel therapeutic targets in uterine sarcomas. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

Back to TopTop