Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,496)

Search Parameters:
Keywords = physical water treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4401 KiB  
Article
Effect of Slightly Acidic Electrolyzed Water Combined with Nano-Bubble Sterilization on Quality of Larimichthys crocea During Refrigerated Storage
by Jiehui Zhong, Hongjin Deng, Na Lin, Mengyao Zheng, Junjie Wu, Quanyou Guo and Saikun Pan
Foods 2025, 14(15), 2754; https://doi.org/10.3390/foods14152754 - 7 Aug 2025
Abstract
The large yellow croaker (Larimichthys crocea) is susceptible to microbial contamination during storage due to its high protein and moisture contents. This study was designed to find a new way to reduce bacteria in large yellow croakers by combining slightly acidic [...] Read more.
The large yellow croaker (Larimichthys crocea) is susceptible to microbial contamination during storage due to its high protein and moisture contents. This study was designed to find a new way to reduce bacteria in large yellow croakers by combining slightly acidic electrolyzed water (SAEW) with nano-bubble (NB) technology. Exploring the effects of available chlorine concentration (ACC), processing time, and water temperature on the bacteria reduction effect of the SAEW-NB treatment for large yellow croakers. Also, the effects of the SAEW-NB combined treatment on sensory evaluation, total viable counts (TVCs), total volatile basic nitrogen (TVB-N), texture, taste profile, and volatile flavor compounds of large yellow croakers were analyzed during the storage period at 4 °C. The results show that the SAEW-NB treatment achieved significantly enhanced microbial reduction compared to individual treatments. Under the conditions of a 4 °C water temperature, 40 mg/L ACC, and 15 min treatment, the SAEW-NB treatment inhibited the increases in physical and chemical indexes such as TVC and TVB-N, maintained the fish texture, and delayed the production of off-flavor volatiles such as aldehydes, alcohols, esters, and ketones, compared with the control group (CG) during storage at 4 °C. In conclusion, the SAEW-NB treatment could better retard fish spoilage, extending the shelf life by approximately 2 days. It might be a promising new industrial approach for large yellow croakers’ storage. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Viewed by 104
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

19 pages, 977 KiB  
Article
Physical-Hydric Properties of a Planosols Under Long-Term Integrated Crop–Livestock–Forest System in the Brazilian Semiarid
by Valter Silva Ferreira, Flávio Pereira de Oliveira, Pedro Luan Ferreira da Silva, Adriana Ferreira Martins, Walter Esfrain Pereira, Djail Santos, Tancredo Augusto Feitosa de Souza, Robson Vinício dos Santos and Milton César Costa Campos
Forests 2025, 16(8), 1261; https://doi.org/10.3390/f16081261 - 2 Aug 2025
Viewed by 189
Abstract
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system [...] Read more.
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system and secondary native vegetation. The experiment was conducted at the experimental station located in Alagoinha, in the Agreste mesoregion of the State of Paraíba, Brazil. The experimental design adopted was a randomized block design (RBD) with five treatments and four replications (5 × 4 + 2). The treatments consisted of: (1) Gliricidia (Gliricidia sepium (Jacq.) Steud) + Signal grass (Urochloa decumbens) (GL+SG); (2) Sabiá (Mimosa caesalpiniaefolia Benth) + Signal grass (SB+SG); (3) Purple Ipê (Handroanthus avellanedae (Lorentz ex Griseb.) Mattos) + SG (I+SG); (4) annual crop + SG (C+SG); and (5) Signal grass (SG). Two additional treatments were included for statistical comparison: a conventional cropping system (CC) and a secondary native vegetation area (NV), both located near the experimental site. The CC treatment showed the lowest bulk density (1.23 g cm−3) and the lowest degree of compaction (66.3%) among the evaluated treatments, as well as a total porosity (TP) higher than 75% (0.75 m3 m−3). In the soil under the integration system, the lowest bulk density (1.38 g cm−3) and the highest total porosity (0.48 m3 m−3) were observed in the SG treatment at the 0.0–0.10 m depth. High S-index values (>0.035) and a low relative field capacity (RFc < 0.50) and Kθ indicate high structural quality and low soil water storage capacity. It was concluded that the SG, I+SG, SB+SG, and CC treatments presented the highest values of soil bulk and degree of compaction in the layers below 0.10 m. The I+SG and C+SG treatments showed the lowest hydraulic conductivities and macroaggregation. The SG and C+SG treatments had the lowest available water content and available water capacity across the three analyzed soil layers. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Graphical abstract

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 - 1 Aug 2025
Viewed by 228
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 215
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

21 pages, 12700 KiB  
Article
Optimization of Developed TiO2 NWs-Fe2O3 Modified PES Membranes for Efficient NBB Dye Removal
by Mouna Mansor Hussein, Qusay F. Alsalhy, Mohamed Gar Alalm and M. M. El-Halwany
ChemEngineering 2025, 9(4), 82; https://doi.org/10.3390/chemengineering9040082 - 1 Aug 2025
Viewed by 203
Abstract
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. [...] Read more.
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. A series of analytical tools were employed to confirm the successful modification including scanning electron microscopy and EDX analysis, porosity and hydrophilicity measurements, Fourier-transform infrared spectroscopy, and X-Ray Diffraction. The incorporation of TiO2 NWs-Fe2O3 has enhanced membrane performance significantly by increasing the PWF and improving dye retention rates of nanocomposite membranes. At 0.7 g of nanostructure content, the modified membrane (M8) achieved a PWF of 93 L/m2·h and NBB dye rejection of over 98%. The flux recovery ratio (FRR) analysis disclosed improved antifouling properties, with the M8 membrane demonstrating a 73.4% FRR. This study confirms the potential of TiO2 NWs-Fe2O3-modified membranes in enhancing water treatment processes, offering a promising solution for industrial wastewater treatment. These outstanding results highlight the potential of the novel PES-TiO2 NWs-Fe2O3 membranes for dye removal and present adequate guidance for the modification of membrane physical properties in the field of wastewater treatment. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 188
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 - 31 Jul 2025
Viewed by 282
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

14 pages, 2265 KiB  
Communication
Bioelectrical Impedance Assessment in a Patient with Breast Cancer: A Case Report on the Effect of Integrative Therapies on Cellular Homeostasis
by Graziella Marino, Giovanni Pace, Lucia Sabato, Marzia Sichetti and Marisabel Mecca
Nutrients 2025, 17(15), 2506; https://doi.org/10.3390/nu17152506 - 30 Jul 2025
Viewed by 155
Abstract
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies [...] Read more.
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies with complementary approaches (nutrition, mind–body practices, and lifestyle modifications), has emerged as a patient-centred model aimed at improving symptom management, treatment adherence, and overall quality of life (QoL). This study aims to demonstrate how integrative therapies can benefit body composition, phase angle, and fluid and electrolyte balance through bioelectrical impedance analysis (BIA). Methods: This study considers a patient who underwent BC surgery and was enrolled in the AMICO clinic for anamnesis, as well as their oncological pathology data, assessment of QoL, and BIA. The breast surgeon specialising in integrative oncology therapies prescribed the patient curcumin and polydatin, moderate physical activity, a balanced diet, and Qigong sessions. The patient underwent monitoring through haematochemical analysis, BIA, and a QoL questionnaire, with follow-up every four months. Results: Between 4 and 12 months, fat mass (FM) and body mass index (BMI) markedly decreased, whereas fat-free mass (FFM), total body water (TBW), and skeletal muscle mass (SMM) increased progressively. Moreover, the improvements in the Na/K ratio and phase angle (PhA) suggest a shift toward better electrolyte and fluid balance and enhanced cellular integrity and membrane function. Equally outstanding were her psychological benefits in terms of mood, sleep, anxiety, and melancholy. Conclusions: Patient progress in body composition, metabolic function, pain management, and psychological status measured during the 12-month follow-up demonstrates the potential benefits of an integrative approach to supportive cancer care. Full article
Show Figures

Figure 1

16 pages, 1583 KiB  
Article
The Influence of Ultraviolet-C Light Pretreatment on Blackcurrant (Ribes nigrum) Quality During Storage
by Zhuoyu Wang, Andrej Svyantek, Zachariah Miller, Haydon Davis and Ashley Kapus
Appl. Sci. 2025, 15(15), 8452; https://doi.org/10.3390/app15158452 - 30 Jul 2025
Viewed by 260
Abstract
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 [...] Read more.
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 W/m2 UVC with different durations, including control (non-treated), UVC irradiation for 0.5 h (0.5 h treatment), UVC irradiation for 1 h (1 h treatment), and UVC pretreatment for 2 h (2 h treatment) to blackcurrant berries before storage. Fundamental physical (firmness and weight loss) and physicochemical characteristics (SSC, pH, and acids), microbial population changes, total phenolic content, antioxidant capacity, and specific phenolic compound changes were evaluated every five days over a twenty-day storage period. The results indicated that the longer the UVC pretreatment, the lower the water weight losses during storage. Meanwhile, the UVC pretreatment significantly affected the blackcurrant soluble solid content, resulting in higher soluble solid contents detected in the blackcurrants with the higher doses of UVC. For the mold population control, UVC effects were highly correlated with the pretreatment duration. However, UVC did not have a significant influence on the berry pH and acid contents, but the storage length slightly increased the pH and decreased the acids. At the same time, UVC pretreatment did not affect the berry firmness, polyphenols, ascorbic acid content, or antioxidant capacities, which were primarily influenced by the storage duration. The monophenolic compounds detected before and after storage indicated that more than one hour of UVC radiation influenced most of the phenolic contents largely before storage. The UVC pretreatment has also influenced some phenolic compounds. After storage, half an hour of UVC pretreatment increased cyanidin levels, and two hours of UVC pretreatment increased catechin and epicatechin levels. However, most of the compounds remained at similar amounts during storage in each treatment. Further research is needed to improve the UVC radiation time length or intensity or explore other technology combinations to optimize UVC pretreatments for blackcurrant storage. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

16 pages, 5818 KiB  
Case Report
Novel Sonoguided Digital Palpation and Ultrasound-Guided Hydrodissection of the Long Thoracic Nerve for Managing Serratus Anterior Muscle Pain Syndrome: A Case Report with Technical Details
by Nunung Nugroho, King Hei Stanley Lam, Theodore Tandiono, Teinny Suryadi, Anwar Suhaimi, Wahida Ratnawati, Daniel Chiung-Jui Su, Yonghyun Yoon and Kenneth Dean Reeves
Diagnostics 2025, 15(15), 1891; https://doi.org/10.3390/diagnostics15151891 - 28 Jul 2025
Viewed by 1092
Abstract
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability [...] Read more.
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability and affecting ipsilateral upper limb movement and quality of life. Current diagnosis relies on exclusion and physical examination, with limited treatment options beyond conservative approaches. This case report presents a novel approach to chronic SAMPS, successfully diagnosed using Sonoguided Digital Palpation (SDP) and treated with ultrasound-guided hydrodissection of the LTN using 5% dextrose in water (D5W) without local anesthetic (LA), in a patient where conventional treatments had failed. Case Presentation: A 72-year-old male presented with a three-year history of persistent left chest pain radiating to the upper back, exacerbated by activity and mimicking cardiac pain. His medical history included two percutaneous coronary interventions. Physical examination revealed tenderness along the anterior axillary line and a positive hyperirritable spot at the mid axillary line at the 5th rib level. SDP was used to visualize the serratus anterior fascia (SAF) and LTN, and to reproduce the patient’s concordant pain by palpating the LTN. Ultrasound-guided hydrodissection of the LTN was then performed using 20–30cc of D5W without LA to separate the nerve from the surrounding tissues, employing a “fascial unzipping” technique. The patient reported immediate pain relief post-procedure, with the pain reducing from 9/10 to 1/10 on the Numeric Rating Scale (NRS), and sustained relief and functional improvement at the 12-month follow-up. Conclusions: Sonoguided Digital Palpation (SDP) of the LTN can serve as a valuable diagnostic adjunct for visualizing and diagnosing SAMPS. Ultrasound-guided hydrodissection of the LTN with D5W without LA may provide a promising and safe treatment option for patients with chronic SAMPS refractory to conservative management, resulting in rapid and sustained pain relief. Further research, including controlled trials, is warranted to evaluate the long-term efficacy and generalizability of these findings and to compare D5W to other injectates. Full article
Show Figures

Figure 1

34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 522
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

12 pages, 6938 KiB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Viewed by 242
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Graphical abstract

15 pages, 562 KiB  
Article
Transforming Agri-Waste into Health Innovation: A Circular Framework for Sustainable Food Design
by Smita Mortero, Jirarat Anuntagool, Achara Chandrachai and Sanong Ekgasit
Sustainability 2025, 17(15), 6712; https://doi.org/10.3390/su17156712 - 23 Jul 2025
Viewed by 406
Abstract
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated [...] Read more.
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated rinsing and hot-air drying. The development process followed a structured analysis of physical, chemical, and sensory properties. The powder contained 83.46 g/100 g dietary fiber, 0° Brix sugar, pH 4.72, low water activity (aw < 0.45), and no detectable heavy metals or microbial contamination. Sensory evaluation by expert panelists confirmed that the product was acceptable in appearance, aroma, and texture, particularly for older adults. These results demonstrate the feasibility and safety of valorizing agri-waste into functional ingredients. The process was guided by the Transformative Circular Product Blueprint, which integrates clean-label processing, IoT-enabled solar drying, and decentralized production. This model supports traceability, low energy use, and adaptation at the community scale. This study contributes to sustainable food innovation and aligns with Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible Consumption and Production). Full article
Show Figures

Figure 1

11 pages, 6478 KiB  
Article
Observation of Blue Particles Formed by Photosensitizing Reaction on Paper Fibres of Cyanotypes
by Sawako Sentoku, Mari Kurashina and Keiko Kida
Photochem 2025, 5(3), 18; https://doi.org/10.3390/photochem5030018 - 23 Jul 2025
Viewed by 211
Abstract
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically [...] Read more.
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically with the application of water. The manner in which Prussian blue is fixed onto the paper substrate is important for determining the treatment method. This study is the first step toward clarifying this mechanism. The presence of Prussian blue in cyanotypes was first confirmed using X-ray diffraction analysis (XRD). Then, the location of Prussian blue in the fibre was confirmed using optical microscopy and micro-Raman spectroscopy analysis, by observing the blue colour and by detecting its cyanide bond. With field-emission scanning electron microscopy (FE-SEM), particles approximately 20–100 nm in size were observed on the surface of cyanotype paper fibres, and particles approximately 20–50 nm in size were observed from the cross-section of the paper fibres. The location where the particles were observed agreed with the location where the blue colour was observed and cyanide bond was detected. The fact that the sensitiser solution soaked into the paper fibres and formed Prussian blue within the paper fibres when exposed to light is thought to be important for the blue fixation of cyanotypes. Full article
Show Figures

Figure 1

Back to TopTop