Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (449)

Search Parameters:
Keywords = photovoltaic generation forecast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7614 KB  
Article
A Cascaded Data-Driven Approach for Photovoltaic Power Output Forecasting
by Chuan Xiang, Xiang Liu, Wei Liu and Tiankai Yang
Mathematics 2025, 13(17), 2728; https://doi.org/10.3390/math13172728 (registering DOI) - 25 Aug 2025
Abstract
Accurate photovoltaic (PV) power output forecasting is critical for ensuring stable operation of modern power systems, yet it is constrained by high-dimensional redundancy in input weather data and the inherent heterogeneity of output scenarios. To address these challenges, this paper proposes a novel [...] Read more.
Accurate photovoltaic (PV) power output forecasting is critical for ensuring stable operation of modern power systems, yet it is constrained by high-dimensional redundancy in input weather data and the inherent heterogeneity of output scenarios. To address these challenges, this paper proposes a novel cascaded data-driven forecasting approach that enhances forecasting accuracy through systematically improving and optimizing the feature extraction, scenario clustering, and temporal modeling. Firstly, guided by weather data–PV power output correlations, the Deep Autoencoder (DAE) is enhanced by integrating Pearson Correlation Coefficient loss, reconstruction loss, and Kullback–Leibler divergence sparsity penalty into a multi-objective loss function to extract key weather factors. Secondly, the Fuzzy C-Means (FCM) algorithm is comprehensively refined through Mahalanobis distance-based sample similarity measurement, max–min dissimilarity principle for initial center selection, and Partition Entropy Index-driven optimal cluster determination to effectively cluster complex PV power output scenarios. Thirdly, a Long Short-Term Memory–Temporal Pattern Attention (LSTM–TPA) model is constructed. It utilizes the gating mechanism and TPA to capture time-dependent relationships between key weather factors and PV power output within each scenario, thereby heightening the sensitivity to key weather dynamics. Validation using actual data from distributed PV power plants demonstrates that: (1) The enhanced DAE eliminates redundant data while strengthening feature representation, thereby enabling extraction of key weather factors. (2) The enhanced FCM achieves marked improvements in both the Silhouette Coefficient and Calinski–Harabasz Index, consequently generating distinct typical output scenarios. (3) The constructed LSTM–TPA model adaptively adjusts the forecasting weights and obtains superior capability in capturing fine-grained temporal features. The proposed approach significantly outperforms conventional approaches (CNN–LSTM, ARIMA–LSTM), exhibiting the highest forecasting accuracy (97.986%), optimal evaluation metrics (such as Mean Absolute Error, etc.), and exceptional generalization capability. This novel cascaded data-driven model has achieved a comprehensive improvement in the accuracy and robustness of PV power output forecasting through step-by-step collaborative optimization. Full article
(This article belongs to the Special Issue Artificial Intelligence and Game Theory)
Show Figures

Figure 1

27 pages, 4648 KB  
Article
Day-Ahead Photovoltaic Power Forecasting Based on SN-Transformer-BiMixer
by Xiaohong Huang, Xiuzhen Ding, Yating Han, Qi Sima, Xiaokang Li and Yukun Bao
Energies 2025, 18(16), 4406; https://doi.org/10.3390/en18164406 - 19 Aug 2025
Viewed by 301
Abstract
Accurate forecasting of photovoltaic (PV) power is crucial for ensuring the safe and stable operation of power systems. However, the practical implementation of forecasting systems often faces challenges due to missing real-time historical power data, typically caused by sensor malfunctions or communication failures, [...] Read more.
Accurate forecasting of photovoltaic (PV) power is crucial for ensuring the safe and stable operation of power systems. However, the practical implementation of forecasting systems often faces challenges due to missing real-time historical power data, typically caused by sensor malfunctions or communication failures, which substantially hamper the performance of existing data-driven time-series forecasting techniques. To address these limitations, this study proposes a novel day-ahead PV forecasting approach based on similar-day analysis, i.e., SN-Transformer-BiMixer. Specifically, a Siamese network (SN) is employed to identify patterns analogous to the target day within a historical power dataset accumulated over an extended period, considering its superior ability to extract discriminative features and quantify similarities. By identifying similar historical days from multiple time scales using SN, a baseline generation pattern for the target day is established to allow forecasting without relying on real-time measurement data. Subsequently, a transformer model is used to refine these similar temporal curves, yielding improved multi-scale forecasting outputs. Finally, a bidirectional mixer (BiMixer) module is designed to synthesize similar curves across multiple scales, thereby providing more accurate forecast results. Experimental results demonstrate the superiority of the proposed model over existing approaches. Compared to Informer, SN-Transformer-BiMixer achieves an 11.32% reduction in root mean square error (RMSE). Moreover, the model exhibits strong robustness to missing data, outperforming the vanilla Transformer by 8.99% in RMSE. Full article
(This article belongs to the Special Issue New Progress in Electricity Demand Forecasting)
Show Figures

Figure 1

29 pages, 4947 KB  
Article
Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16
by Yulu Yi, Zhuowen Zheng, Taotao Lv, Jiaxin Dong, Jie Yang, Zhiyong Lin and Siwei Li
Remote Sens. 2025, 17(16), 2861; https://doi.org/10.3390/rs17162861 - 17 Aug 2025
Viewed by 374
Abstract
Surface solar irradiance (SSI) is a critical factor influencing the power generation capacity of photovoltaic (PV) power plants. Dynamic changes in cloud cover pose significant challenges to the accurate nowcasting of SSI, which in turn directly affects the reliability and stability of renewable [...] Read more.
Surface solar irradiance (SSI) is a critical factor influencing the power generation capacity of photovoltaic (PV) power plants. Dynamic changes in cloud cover pose significant challenges to the accurate nowcasting of SSI, which in turn directly affects the reliability and stability of renewable energy systems. However, existing research often simplifies or overlooks changes in the optical and morphological characteristics of clouds, leading to considerable errors in SSI nowcasting. To address this limitation and improve the accuracy of ultra-short-term SSI forecasting, this study first forecasts changes in cloud optical thickness (COT) within the next 3 h based on a spatiotemporal long short-term memory model, since COT is the primary factor determining cloud shading effects, and then integrates the zenith and regional averages of COT, along with factors influencing direct solar radiation and scattered radiation, to achieve precise SSI nowcasting. To validate the proposed method, we apply it to the Albuquerque, New Mexico, United States (ABQ) site, where it yielded promising performance, with correlations between predicted and actual surface solar irradiance for the next 1 h, 2 h, and 3 h reaching 0.94, 0.92, and 0.92, respectively. The proposed method effectively captures the temporal trends and spatial patterns of cloud changes, avoiding simplifications of cloud movement trends or interference from non-cloud factors, thus providing a basis for power adjustments in solar power plants. Full article
Show Figures

Figure 1

27 pages, 5818 KB  
Article
Scenario-Based Stochastic Optimization for Renewable Integration Under Forecast Uncertainty: A South African Power System Case Study
by Martins Osifeko and Josiah Munda
Processes 2025, 13(8), 2560; https://doi.org/10.3390/pr13082560 - 13 Aug 2025
Viewed by 452
Abstract
South Africa’s transition to a renewable-powered grid faces critical challenges due to the inherent variability of wind and solar generation as well as the need for economically viable and reliable dispatch strategies. This study proposes a scenario-based stochastic optimization framework that integrates machine [...] Read more.
South Africa’s transition to a renewable-powered grid faces critical challenges due to the inherent variability of wind and solar generation as well as the need for economically viable and reliable dispatch strategies. This study proposes a scenario-based stochastic optimization framework that integrates machine learning forecasting and uncertainty modeling to enhance operational decision making. A hybrid Long Short-Term Memory–XGBoost model is employed to forecast wind, photovoltaic (PV) power, concentrated solar power (CSP), and electricity demand, with Monte Carlo dropout and quantile regression used for uncertainty quantification. Scenarios are generated using appropriate probability distributions and are reduced via Temporal-Aware K-Means Scenario Reduction for tractability. A two-stage stochastic program then optimizes power dispatch under uncertainty, benchmarked against Deterministic, Rule-Based, and Perfect Information models. Simulation results over 7 days using five years of real-world South African energy data show that the stochastic model strikes a favorable balance between cost and reliability. It incurs a total system cost of ZAR 1.748 billion, with 1625 MWh of load shedding and 1283 MWh of curtailment, significantly outperforming the deterministic model (ZAR 1.763 billion; 3538 MWh load shedding; 59 MWh curtailment) and the rule-based model (ZAR 1.760 billion, 1.809 MWh load shedding; 1475 MWh curtailment). The proposed stochastic framework demonstrates strong potential for improving renewable integration, reducing system penalties, and enhancing grid resilience in the face of forecast uncertainty. Full article
Show Figures

Figure 1

26 pages, 3734 KB  
Article
Impact of PM2.5 Pollution on Solar Photovoltaic Power Generation in Hebei Province, China
by Ankun Hu, Zexia Duan, Yichi Zhang, Zifan Huang, Tianbo Ji and Xuanhua Yin
Energies 2025, 18(15), 4195; https://doi.org/10.3390/en18154195 - 7 Aug 2025
Viewed by 441
Abstract
Atmospheric aerosols significantly impact solar photovoltaic (PV) energy generation through their effects on surface solar radiation. This study quantifies the impact of PM2.5 pollution on PV power output using observational data from 10 stations across Hebei Province, China (2018–2019). Our analysis reveals [...] Read more.
Atmospheric aerosols significantly impact solar photovoltaic (PV) energy generation through their effects on surface solar radiation. This study quantifies the impact of PM2.5 pollution on PV power output using observational data from 10 stations across Hebei Province, China (2018–2019). Our analysis reveals that elevated PM2.5 concentrations substantially attenuate solar irradiance, resulting in PV power losses reaching up to a 48.2% reduction in PV power output during severe pollution episodes. To capture these complex aerosol–radiation–PV interactions, we developed and compared the following six machine learning models: Support Vector Regression, Random Forest, Decision Tree, K-Nearest Neighbors, AdaBoost, and Backpropagation Neural Network. The inclusion of PM2.5 as a predictor variable systematically enhanced model performance across all algorithms. To further optimize prediction accuracy, we implemented a stacking ensemble framework that integrates multiple base learners through meta-learning. The optimal stacking configuration achieved superior performance (MAE = 0.479 MW, indicating an average prediction error of 479 kilowatts; R2 = 0.967, reflecting that 96.7% of the variance in power output is explained by the model), demonstrating robust predictive capability under diverse atmospheric conditions. These findings underscore the importance of aerosol–radiation interactions in PV forecasting and provide crucial insights for grid management in pollution-affected regions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 3337 KB  
Article
Imbalance Charge Reduction in the Italian Intra-Day Market Using Short-Term Forecasting of Photovoltaic Generation
by Cristina Ventura, Giuseppe Marco Tina and Santi Agatino Rizzo
Energies 2025, 18(15), 4161; https://doi.org/10.3390/en18154161 - 5 Aug 2025
Viewed by 362
Abstract
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability [...] Read more.
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability makes them particularly sensitive to forecast accuracy. To address these challenges, a comprehensive methodology for assessing and mitigating imbalance penalties by integrating a short-term PV forecasting model with a battery energy storage system is proposed. Unlike conventional approaches that focus exclusively on improving statistical accuracy, this study emphasizes the economic and regulatory impact of forecast errors under the current Italian imbalance settlement framework. A hybrid physical-artificial neural network is developed to forecast PV power one hour in advance, combining historical production data and clear-sky irradiance estimates. The resulting imbalances are analyzed using regulatory tolerance thresholds. Simulation results show that, by adopting a control strategy aimed at maintaining the battery’s state of charge around 50%, imbalance penalties can be completely eliminated using a storage system sized for just over 2 equivalent hours of storage capacity. The methodology provides a practical tool for market participants to quantify the benefits of storage integration and can be generalized to other electricity markets where tolerance bands for imbalances are applied. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid: 2nd Edition)
Show Figures

Figure 1

12 pages, 1486 KB  
Proceeding Paper
Comparative Analysis Between Simulation Using Specialized Software for Photovoltaic Power Plant Design and Real-World Data from a Solar Power Plant
by Mincho Velkov and Stanimir Stefanov
Eng. Proc. 2025, 100(1), 64; https://doi.org/10.3390/engproc2025100064 - 31 Jul 2025
Viewed by 125
Abstract
This study presents a comparative analysis between simulated results obtained using PVSol Expert software and real operational data from a functioning photovoltaic power plant (PVPP) located in Plovdiv, Bulgaria. The primary objective is to evaluate the accuracy and practical applicability of simulation-based predictions [...] Read more.
This study presents a comparative analysis between simulated results obtained using PVSol Expert software and real operational data from a functioning photovoltaic power plant (PVPP) located in Plovdiv, Bulgaria. The primary objective is to evaluate the accuracy and practical applicability of simulation-based predictions compared to actual system performance under real-world climatic and geographical conditions. The analysis is based on a comprehensive dataset, including generated electricity, solar irradiance levels, ambient temperature, and system losses. These real measurements are systematically compared against a PVSol Expert simulation model constructed using identical input parameters—such as module orientation and tilt, number and type of panels, inverter specifications, and electrical configuration. The results provide insight into the reliability of simulation tools for design verification and performance forecasting in photovoltaic applications. Full article
Show Figures

Figure 1

22 pages, 3409 KB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 - 31 Jul 2025
Viewed by 271
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

19 pages, 1761 KB  
Article
Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model
by Jining Wang, Hui Chen and Lei Wang
Mathematics 2025, 13(15), 2453; https://doi.org/10.3390/math13152453 - 30 Jul 2025
Viewed by 256
Abstract
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It [...] Read more.
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It integrates the principles of genetic algorithm (GA) with particle swarm optimization (PSO) to develop a new model called the GA-PSO-BP. This study also considers the material price from both the supply and demand sides of the photovoltaic industry. These prices are important factors in China’s silicon wafer price prediction. This research indicates that improving the BP model by integrating GA allows for a broader exploration of potential solution spaces. This approach helps to prevent local minima and identify the optimal solution. The BP model converges more quickly by using PSO for weight initialization. Additionally, the method by which particles share information decreases the probability of being confined to local optima. The upgraded GA-PSO-BP model demonstrates improved generalization capabilities and makes more accurate predictions. The MAE (Mean Absolute Error) value of the GA-PSO-BP model is 31.01% lower than those of the standalone BP model and also falls by 19.36% and 16.28% relative to the GA-BP and PSO-BP models, respectively. The smaller the value, the closer the prediction result of the model is to the actual value. This model has proven effective and superior in China’s silicon wafer price prediction. This capability makes it an essential resource for market analysis and decision-making within the silicon wafer industry. Full article
Show Figures

Figure 1

38 pages, 5939 KB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 565
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

37 pages, 7561 KB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 366
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

22 pages, 7392 KB  
Article
Model Predictive Control for Charging Management Considering Mobile Charging Robots
by Max Faßbender, Nicolas Rößler, Christoph Wellmann, Markus Eisenbarth and Jakob Andert
Energies 2025, 18(15), 3948; https://doi.org/10.3390/en18153948 - 24 Jul 2025
Viewed by 356
Abstract
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to [...] Read more.
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to maximize operational efficiency and revenue. This study investigates a Model Predictive Control (MPC) approach using Mixed-Integer Linear Programming (MILP) to coordinate MCR charging and movement, accounting for the additional complexity that EVs can park at arbitrary locations. The performance impact of EV arrival and demand forecasts is evaluated, comparing perfect foresight with data-driven predictions using long short-term memory (LSTM) networks. A slack variable method is also introduced to ensure timely recharging of the MCRs. Results show that incorporating forecasts significantly improves performance compared to no prediction, with perfect forecasts outperforming LSTM-based ones due to better-timed recharging decisions. The study highlights that inaccurate forecasts—especially in the evening—can lead to suboptimal MCR utilization and reduced profitability. These findings demonstrate that combining MPC with predictive models enhances MCR-based EV charging strategies and underlines the importance of accurate forecasting for future smart charging systems. Full article
Show Figures

Figure 1

11 pages, 493 KB  
Proceeding Paper
PV Power Generation Forecasting with Fuzzy Inference Systems
by Cinthia Rodriguez, Marco Pacheco, Marley Vellasco, Manoela Kohler and Thiago Medeiros
Eng. Proc. 2025, 101(1), 5; https://doi.org/10.3390/engproc2025101005 - 23 Jul 2025
Viewed by 240
Abstract
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and [...] Read more.
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and evaluated using a sliding window technique and a validation set. The development of the study utilized data collected from 1 May 2018 to 30 June 2018 at the Universidad Autónoma de Occidente campus. The dataset was analyzed in order to identify any discernible trends, seasonal patterns, and instances of stationarity. A comparison of the six models revealed their ability to predict PV power generation, with the model with 13 lags and five fuzzy sets demonstrating results with a reasonable trade-off between training and test performance. The model achieved an R-squared value of 0.8124 and an RMSE of 29.7025 kWh in the test data, indicating that the predictions were closely aligned with the actual values. However, this suggests that the model may be overly simple or may require additional data to more accurately capture the inherent variability of the data. The paper concludes with a discussion of the model’s limitations and potential avenues for future research. Full article
Show Figures

Figure 1

29 pages, 9145 KB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 305
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

27 pages, 3704 KB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Cited by 1 | Viewed by 502
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

Back to TopTop