Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. Cloud Optical Thickness Data
2.1.2. Surface Solar Irradiance Data
2.2. Methods
2.2.1. Cloud Optical Thickness Prediction Module
- (1)
- Loss Function
- (2)
- Center Enhancement
- (3)
- Result Evaluation
2.2.2. Surface Solar Irradiance Prediction Module
3. Results
3.1. Cloud Prediction
3.1.1. COT Forecast
3.1.2. Cloud Classification
3.2. Irradiance Estimation
3.3. Irradiance Nowcasting
3.4. Case Studies
3.4.1. Case 1: Cloud Moves Fast
3.4.2. Case 2: Scattered Small Clouds
4. Discussion
4.1. Comparative Assessment of Irradiance Nowcasting Methods
4.2. Irradiance Nowcasting Performance Across Diverse Sites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
Appendix A.5
Appendix B
Appendix B.1
References
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Electricity 2025. Available online: https://www.iea.org/reports/electricity-2025 (accessed on 6 June 2025).
- Jacobson, M.Z.; Delucchi, M.A. Providing All Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Raptis, P.I.; Keramitsoglou, I.; Kiranoudis, C.; Bais, A.F. Assessment of Surface Solar Irradiance Derived from Real-Time Modelling Techniques and Verification with Ground-Based Measurements. Atmos. Meas. Tech. 2018, 11, 907–924. [Google Scholar] [CrossRef]
- Nanou, S.I.; Papakonstantinou, A.G.; Papathanassiou, S.A. A Generic Model of Two-Stage Grid-Connected PV Systems with Primary Frequency Response and Inertia Emulation. Electr. Power Syst. Res. 2015, 127, 186–196. [Google Scholar] [CrossRef]
- Shah, R.; Mithulananthan, N.; Bansal, R.C.; Ramachandaramurthy, V.K. A Review of Key Power System Stability Challenges for Large-Scale PV Integration. Renew. Sustain. Energy Rev. 2015, 41, 1423–1436. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Mi, Z.; Sun, H.; Su, S.; Yang, G. Solar Irradiance Feature Extraction and Support Vector Machines Based Weather Status Pattern Recognition Model for Short-Term Photovoltaic Power Forecasting. Energy Build. 2015, 86, 427–438. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, D.; Zhu, X. Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge. Energy 2021, 225, 120240. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M.H. Solar Power Technologies for Sustainable Electricity Generation—A Review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- Markovics, D.; Mayer, M.J. Comparison of Machine Learning Methods for Photovoltaic Power Forecasting Based on Numerical Weather Prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [Google Scholar] [CrossRef]
- Ma, W.; Wu, J.; Yan, P. Ultra-Short Term Solar Irradiance Prediction Considering Satellite Cloud Images. In Proceedings of the 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE), Yangzhou, China, 26–28 April 2024; pp. 1371–1377. [Google Scholar]
- Zhang, Y.; Liang, S.; He, T. Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4414415. [Google Scholar] [CrossRef]
- Huang, G.; Li, Z.; Li, X.; Liang, S.; Yang, K.; Wang, D.; Zhang, Y. Estimating Surface Solar Irradiance from Satellites: Past, Present, and Future Perspectives. Remote Sens. Environ. 2019, 233, 111371. [Google Scholar] [CrossRef]
- Huang, G.; Ma, M.; Liang, S.; Liu, S.; Li, X. A LUT-Based Approach to Estimate Surface Solar Irradiance by Combining MODIS and MTSAT Data: Estimating SSI Combining MODIS and MTSAT. J. Geophys. Res. 2011, 116, D22201. [Google Scholar] [CrossRef]
- Mora-López, L.L.; Sidrach-de-Cardona, M. Multiplicative ARMA Models to Generate Hourly Series of Global Irradiation. Sol. Energy 1998, 63, 283–291. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Li, L.-L.; Tseng, M.-L.; Lim, M.K. Prediction Short-Term Photovoltaic Power Using Improved Chicken Swarm Optimizer—Extreme Learning Machine Model. J. Clean. Prod. 2020, 248, 119272. [Google Scholar] [CrossRef]
- Huang, C.; Yang, M. Memory Long and Short Term Time Series Network for Ultra-Short-Term Photovoltaic Power Forecasting. Energy 2023, 279, 127961. [Google Scholar] [CrossRef]
- Xiao, X.; Mo, H.; Zhang, Y.; Shan, G. Meta-ANN—A Dynamic Artificial Neural Network Refined by Meta-Learning for Short-Term Load Forecasting. Energy 2022, 246, 123418. [Google Scholar] [CrossRef]
- Cao, J.C.; Cao, S.H. Study of Forecasting Solar Irradiance Using Neural Networks with Preprocessing Sample Data by Wavelet Analysis. Energy 2006, 31, 3435–3445. [Google Scholar] [CrossRef]
- Aprillia, H.; Yang, H.-T.; Huang, C.-M. Statistical Load Forecasting Using Optimal Quantile Regression Random Forest and Risk Assessment Index. IEEE Trans. Smart Grid 2021, 12, 1467–1480. [Google Scholar] [CrossRef]
- Hao, D.; Asrar, G.R.; Zeng, Y.; Zhu, Q.; Wen, J.; Xiao, Q.; Chen, M. Estimating Hourly Land Surface Downward Shortwave and Photosynthetically Active Radiation from DSCOVR/EPIC Observations. Remote Sens. Environ. 2019, 232, 111320. [Google Scholar] [CrossRef]
- Bae, K.Y.; Jang, H.S.; Sung, D.K. Hourly Solar Irradiance Prediction Based on Support Vector Machine and Its Error Analysis. IEEE Trans. Power Syst. 2016, 32, 935–945. [Google Scholar] [CrossRef]
- Liu, L.; Liu, F.; Zheng, Y. A Novel Ultra-Short-Term PV Power Forecasting Method Based on DBN-Based Takagi-Sugeno Fuzzy Model. Energies 2021, 14, 6447. [Google Scholar] [CrossRef]
- Caldas, M.; Alonso-Suárez, R. Very Short-Term Solar Irradiance Forecast Using All-Sky Imaging and Real-Time Irradiance Measurements. Renew. Energy 2019, 143, 1643–1658. [Google Scholar] [CrossRef]
- Yang, H.; Kurtz, B.; Nguyen, D.; Urquhart, B.; Chow, C.W.; Ghonima, M.; Kleissl, J. Solar Irradiance Forecasting Using a Ground-Based Sky Imager Developed at UC San Diego. Sol. Energy 2014, 103, 502–524. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Bharadwaj, S.; Kalyanaraman, S. A Deep Learning Approach to Solar-Irradiance Forecasting in Sky-Videos. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–9 January 2019; pp. 2166–2174. [Google Scholar]
- Kosmopoulos, P.; Kouroutsidis, D.; Papachristopoulou, K.; Raptis, P.I.; Masoom, A.; Saint-Drenan, Y.-M.; Blanc, P.; Kontoes, C.; Kazadzis, S. Short-Term Forecasting of Large-Scale Clouds Impact on Downwelling Surface Solar Irradiation. Energies 2020, 13, 6555. [Google Scholar] [CrossRef]
- Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic Power Forecast Based on Satellite Images Considering Effects of Solar Position. Appl. Energy 2021, 302, 117514. [Google Scholar] [CrossRef]
- Straub, N.; Karalus, S.; Herzberg, W.; Lorenz, E. Satellite-Based Solar Irradiance Forecasting: Replacing Cloud Motion Vectors by Deep Learning. Sol. RRL 2024, 8, 2400475. [Google Scholar] [CrossRef]
- Chiu, J.C.; Huang, C.; Marshak, A.; Slutsker, I.; Giles, D.M.; Holben, B.N.; Knyazikhin, Y.; Wiscombe, W.J. Cloud Optical Depth Retrievals from the Aerosol Robotic Network (AERONET) Cloud Mode Observations. J. Geophys. Res. 2010, 115, 2009JD013121. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.S.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2208–2225. [Google Scholar] [CrossRef]
- Michael, C. GOES-R Series Product Definition and Users’ Guide (PUG) Volume 5: Level 2+ Products. Available online: https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf (accessed on 6 June 2025).
- Hasler, A.F.; Shenk, W.E.; Skillman, W.C. Wind Estimates from Cloud Motions: Results from Phases I, II and III of an In Situ Aircraft Verification Experiment. J. Appl. Meteorol. 1977, 16, 812–815. [Google Scholar] [CrossRef]
- Rossow, W.B.; Knapp, K.R.; Young, A.H. International Satellite Cloud Climatology Project: Extending the Record. J. Clim. 2022, 35, 141–158. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems; Long Beach, CA, USA, 4–9 December 2017, pp. 3149–3157.
- Gan, M.; Pan, S.; Chen, Y.; Cheng, C.; Pan, H.; Zhu, X. Application of the Machine Learning LightGBM Model to the Prediction of the Water Levels of the Lower Columbia River. J. Mar. Sci. Eng. 2021, 9, 496. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T. Application of Improved LightGBM Model in Blood Glucose Prediction. Appl. Sci. 2020, 10, 3227. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Zhao, Q. Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection. IEEE Access 2024, 12, 159316–159335. [Google Scholar] [CrossRef]
- Yang, D.; Alessandrini, S.; Antonanzas, J.; Antonanzas-Torres, F.; Badescu, V.; Beyer, H.G.; Blaga, R.; Boland, J.; Bright, J.M.; Coimbra, C.F.M.; et al. Verification of Deterministic Solar Forecasts. Sol. Energy 2020, 210, 20–37. [Google Scholar] [CrossRef]
- Marchesoni-Acland, F.; Herrera, A.; Mozo, F.; Camiruaga, I.; Castro, A.; Alonso-Suárez, R. Deep Learning Methods for Intra-Day Cloudiness Prediction Using Geostationary Satellite Images in a Solar Forecasting Framework. Sol. Energy 2023, 262, 111820. [Google Scholar] [CrossRef]
- Yang, D. Making Reference Solar Forecasts with Climatology, Persistence, and Their Optimal Convex Combination. Sol. Energsy 2019, 193, 981–985. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Su, X.; Li, T.; An, C.; Wang, G. Prediction of Short-Time Cloud Motion Using a Deep-Learning Model. Atmosphere 2020, 11, 1151. [Google Scholar] [CrossRef]
- Aicardi, D.; Musé, P.; Alonso-Suárez, R. A Comparison of Satellite Cloud Motion Vectors Techniques to Forecast Intra-Day Hourly Solar Global Horizontal Irradiation. Sol. Energy 2022, 233, 46–60. [Google Scholar] [CrossRef]
- Obiora, C.N.; Ali, A. Effective Implementation of Convolutional Long Short-Term Memory (ConvLSTM) Network in Forecasting Solar Irradiance. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [Google Scholar]
- Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Image Analysis; Bigun, J., Gustavsson, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2749, pp. 363–370. ISBN 978-3-540-40601-3. [Google Scholar]
- Hasan, R.; Siddique, T.; Rahman, M.S.; Kabir, M.A. LSTM-Based Deep Learning Model for Solar Irradiance Prediction Across Diverse Climate Zones. In Proceedings of the 2025 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 24–25 April 2025; pp. 1–6. [Google Scholar]
Timesteps | Type | COT1 | COT2 | COT3 | COT4 |
---|---|---|---|---|---|
Next 1 h | Alltime | 0.47 | 0.54 | 0.62 | 0.66 |
Daytime | 0.49 | 0.58 | 0.65 | 0.70 | |
Transmissivity | 0.73 | 0.77 | 0.78 | 0.80 | |
Next 2 h | Alltime | 0.29 | 0.35 | 0.45 | 0.48 |
Daytime | 0.34 | 0.46 | 0.57 | 0.63 | |
Transmissivity | 0.64 | 0.69 | 0.70 | 0.71 | |
Next 3 h | Alltime | 0.27 | 0.31 | 0.39 | 0.44 |
Daytime | 0.38 | 0.48 | 0.58 | 0.62 | |
Transmissivity | 0.58 | 0.63 | 0.64 | 0.65 |
Timesteps | Model | MSE | RMSE | MBE | MAE | R | FS |
---|---|---|---|---|---|---|---|
Next 1 h | Optical flow | 24,182.18 | 155.51 | −45.23 | 103.17 | 0.89 | 0.60 |
LSTM | 20,175.96 | 142.04 | −31.71 | 90.01 | 0.91 | 0.64 | |
ConvLSTM | 15,030.78 | 122.60 | −16.44 | 71.17 | 0.93 | 0.69 | |
PredRNN | 14,603.50 | 120.84 | −14.52 | 66.18 | 0.93 | 0.69 | |
Ours | 12,436.13 | 111.52 | −1.62 | 57.09 | 0.94 | 0.71 | |
Next 2 h | Optical flow | 27,152.10 | 164.78 | −47.01 | 110.53 | 0.88 | 0.58 |
LSTM | 26,870.74 | 163.92 | −45.85 | 106.80 | 0.88 | 0.58 | |
ConvLSTM | 17,510.18 | 132.33 | −26.83 | 80.84 | 0.92 | 0.66 | |
PredRNN | 17,051.26 | 130.58 | −25.19 | 76.73 | 0.92 | 0.66 | |
Ours | 16,441.54 | 128.22 | −4.2 | 66.10 | 0.92 | 0.67 | |
Next 3 h | Optical flow | 28,284.34 | 168.18 | −48.76 | 112.46 | 0.87 | 0.57 |
LSTM | 28,196.71 | 167.92 | −43.99 | 108.96 | 0.87 | 0.57 | |
ConvLSTM | 21,476.31 | 146.55 | −36.01 | 90.63 | 0.90 | 0.62 | |
PredRNN | 22,955.30 | 151.51 | −33.08 | 89.45 | 0.89 | 0.61 | |
Ours | 17,519.06 | 132.36 | 0.02 | 66.42 | 0.92 | 0.66 |
Timesteps | Site | MSE | RMSE | MBE | MAE | R |
---|---|---|---|---|---|---|
Next 1 h | ABQ | 12,436.13 | 111.52 | −1.62 | 57.09 | 0.94 |
MSN | 27,865.33 | 166.93 | −32.61 | 109.80 | 0.81 | |
SLC | 12,991.38 | 113.98 | −10.38 | 64.72 | 0.91 | |
Next 2 h | ABQ | 16,441.54 | 128.22 | −4.20 | 66.10 | 0.92 |
MSN | 26,051.28 | 161.40 | −60.19 | 103.46 | 0.85 | |
SLC | 14,936.83 | 122.22 | −11.13 | 70.79 | 0.91 | |
Next 3 h | ABQ | 17,519.06 | 132.36 | 0.02 | 66.42 | 0.92 |
MSN | 24,592.56 | 156.82 | −47.31 | 95.60 | 0.86 | |
SLC | 17,614.27 | 132.72 | −20.33 | 73.48 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Zheng, Z.; Lv, T.; Dong, J.; Yang, J.; Lin, Z.; Li, S. Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16. Remote Sens. 2025, 17, 2861. https://doi.org/10.3390/rs17162861
Yi Y, Zheng Z, Lv T, Dong J, Yang J, Lin Z, Li S. Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16. Remote Sensing. 2025; 17(16):2861. https://doi.org/10.3390/rs17162861
Chicago/Turabian StyleYi, Yulu, Zhuowen Zheng, Taotao Lv, Jiaxin Dong, Jie Yang, Zhiyong Lin, and Siwei Li. 2025. "Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16" Remote Sensing 17, no. 16: 2861. https://doi.org/10.3390/rs17162861
APA StyleYi, Y., Zheng, Z., Lv, T., Dong, J., Yang, J., Lin, Z., & Li, S. (2025). Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16. Remote Sensing, 17(16), 2861. https://doi.org/10.3390/rs17162861