Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = photosynthetic quenching analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2446 KB  
Article
Near-Infrared Excited Mn4+- and Nd3+-Doped Y2SiO5 Luminescent Material with Flower-like Morphology for Plant-Centric Lighting Applications
by Liza Rani Deka, Marta Michalska-Domańska, Shubhra Mishra, D. S. Kshatri, M. C. Rao, Neeraj Verma and Vikas Dubey
Molecules 2025, 30(21), 4161; https://doi.org/10.3390/molecules30214161 - 22 Oct 2025
Cited by 1 | Viewed by 539
Abstract
Confronted with increasing global food demands, diminishing arable land, and climate volatility, controlled-environment agriculture with advanced red and far-red LED lighting can enhance photosynthesis and optimize plant growth. This investigation reports the generation of a Mn4+/Nd3+ co-doped Y2SiO [...] Read more.
Confronted with increasing global food demands, diminishing arable land, and climate volatility, controlled-environment agriculture with advanced red and far-red LED lighting can enhance photosynthesis and optimize plant growth. This investigation reports the generation of a Mn4+/Nd3+ co-doped Y2SiO5 phosphor with a Nd3+ concentration ranging from 0.1 to 2.5 mol% via a solid-state synthesis method, aiming to enhance red and far-red emission for plant cultivation LEDs. For the Y2SiO5:Mn4+ (1 mol%), Nd3+ (2 mol%) phosphor, the phase integrity, nanostructured morphology, elemental mapping, and vibrational characteristics were examined using XRD, Rietveld analysis, FTIR, SEM, and EDX. Nd3+ ions act as near-infrared excitation mediators, ensuring efficient Nd3+ → Mn4+ energy transfer upon 808 nm excitation, and this leads to pronounced red photoluminescence from Mn4+ ions that covers the range of 640–710 nm, exhibiting strong emission peaks centered at 650nm, 663nm, and 685nm, coinciding with the absorption band of phytochromes and chlorophyll. The optimal emission intensity was accomplished for a Nd3+ doping concentration of 2 mol%, beyond which concentration quenching occurred. The material produced a strong, concentrated deep red emission with CIE coordinates near (0.73, 0.27) and a high color purity of 98.96%, making it well-suited for photosynthetic activation. A phosphor-integrated red pc-LED was fabricated, and Tulsi plants were grown under this LED during the winter in Meghalaya, a period critical for plant growth due to the low ambient light. Over a 30-day period, the plants exhibited enhanced height and leaf development, demonstrating the practical potential of Mn4+/Nd3+ co-doped Y2SiO5 for energy-efficient, wavelength-optimized horticultural lighting. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

22 pages, 2795 KB  
Article
Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata
by Macarena Troncoso, Zoë L. Fleming, Félix L. Figueroa, Nathalie Korbee, Ronald Durán, Camilo Navarrete, Cecilia Rivera and Paula S. M. Celis-Plá
Plants 2025, 14(15), 2341; https://doi.org/10.3390/plants14152341 - 29 Jul 2025
Viewed by 779
Abstract
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae [...] Read more.
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae Lessonia spicata in the central Pacific coast of Chile, across seasonal and daily cycles, under different environmental stressors, such as temperature and solar irradiance. Measurements were performed using an infra-red gas analysis (IRGA) instrument which had a chamber allowing for precise quantification of CO2 concentrations; additional photophysiological and biochemical responses were also measured. CO2 assimilation, along with the productivity and biosynthesis of proteins and lipids, increased during the spring, coinciding with moderate temperatures (~14 °C) and high photosynthetically active radiation (PAR). Furthermore, the increased production of photoprotective and antioxidant compounds, including phenolic compounds, and carotenoids, along with the enhancement of non-photochemical quenching (NPQ), contribute to the effective photoacclimation strategies of L. spicata. Principal component analysis (PCA) revealed seasonal associations between productivity, reactive oxygen species (ROSs), and biochemical indicators, particularly during the spring and summer. These associations, further supported by Pearson correlation analyses, suggest a high but seasonally constrained photoacclimation capacity. In contrast, the reduced productivity and photoprotection observed in the summer suggest increased physiological vulnerability to heat and light stress. Overall, our findings position L. spicata as a promising nature-based solution for climate change mitigation. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

19 pages, 26828 KB  
Article
Synergistic Effects of Elevated CO2 and Enhanced Light Intensity on Growth Dynamics, Stomatal Phenomics, Leaf Anatomy, and Photosynthetic Performance in Tomato Seedlings
by Tonghua Pan, Wenya Zhang, Wentao Du, Bingyan Fu, Xiaoting Zhou, Kai Cao, Encai Bao, Yunlong Wang and Gaoqiang Lv
Horticulturae 2025, 11(7), 760; https://doi.org/10.3390/horticulturae11070760 - 1 Jul 2025
Cited by 1 | Viewed by 1192
Abstract
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings [...] Read more.
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No.1) to two [CO2] (ambient [a[CO2], 400 µmol·mol−1] and enriched [e[CO2], 800 µmol·mol−1]) and three PPFD levels (L; low[Ll: 200 µmol·m−2·s−1], moderate[Lm: 300 µmol·m−2·s−1], and high[Lh: 400 µmol·m−2·s−1]) to assess their interactive impacts. Results showed that e[CO2] and increased PPFD synergistically improved relative growth rate and net assimilation rate while reducing specific leaf area and leaf area ratio. Notably, e[CO2] decreased stomatal aperture (−13.81%) and density (−27.76%), whereas elevated PPFD promoted stomatal morphological adjustments. Additionally, Leaf thickness increased by 72.98% under e[CO2], with Lm and Lh enhancing this by 10.79% and 41.50% compared to Ll. Furthermore, photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). While both e[CO2] and increased PPFD Photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). Moreover, e[CO2]-Lh treatment maximized total dry mass and seedling health index. Correlation analysis indicated that synergistic optimization of stomatal traits and leaf structure under a combination of e[CO2] and increased PPFD enhanced light harvesting and CO2 diffusion, thereby promoting carbon assimilation. These findings highlight e[CO2]-Lh as an optimal strategy for tomato seedling growth, providing empirical guidance for precision CO2 fertilization and light management in controlled cultivation. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

23 pages, 3893 KB  
Article
Subtypes I and II of Ulva prolifera O.F. Müller: Dominant Green Tide Species in the Southern Yellow Sea and Their Responses to Natural Light and Temperature Conditions
by Shuang Zhao, Jinlin Liu, Zhangyi Xia, Jingyi Sun, Jianheng Zhang and Peimin He
Biology 2025, 14(6), 702; https://doi.org/10.3390/biology14060702 - 15 Jun 2025
Viewed by 1172
Abstract
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped [...] Read more.
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped morphology but exhibit distinct cellular dimensions. Subtype I gametes demonstrated significantly larger cell sizes, with long and short axes measuring 6.55 μm and 4.62 μm, respectively, compared to Subtype II’s dimensions of 6.46 μm (long axis) and 3.03 μm (short axis). Developmental analysis revealed striking morphological divergence at the 6-day germling stage: Subtype I attained an average length of 1301.14 μm, more than doubling Subtype II’s 562.25 μm. Superior growth kinetics were observed in Subtype I, exhibiting enhanced specific growth rates (SGRs) across multiple parameters—main stem length (8.58% vs. 3.55%), primary branch elongation (19.17% vs. 12.59%), main stem width expansion (17.29% vs. 5.00%), and biomass accumulation (41.90% vs. 40.96% fresh weight). Chlorophyll quantification confirmed significantly higher pigment content in Subtype I. Pre-co-culture photosynthetic profiling demonstrated Subtype I’s superior quantum efficiency (α = 0.077 vs. 0.045) with marked differences in regulated energy dissipation (YNPQ) and non-photochemical quenching (NPQ). Post-co-culture physiological adaptation was evident in Subtype II, showing significant elevation of non-regulated energy dissipation quantum yield (YNO) and eventual surpassing of maximum electron transport rate (ETRmax) compared to Subtype I. These findings establish that U. prolifera employs robust photoprotective and thermal adaptation strategies under natural photothermal conditions. Crucially, YNO-based analysis revealed Subtype II’s enhanced high-light protection mechanisms and superior adaptability to intense irradiance environments. This research elucidates ecotype-specific environmental adaptation mechanisms in U. prolifera, providing critical insights for optimizing green tide mitigation strategies and advancing ecological understanding of algal bloom dynamics. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

15 pages, 823 KB  
Article
Research on the Influence of Orthogonal Design Optimized Elicitor Combinations on Fucoxanthin Accumulation in Phaeodactylum tricornutum and Its Expression Regulation
by Han Yang, Yifu Gong, Boyue Liu, Yuru Chen, Huan Qin, Heyu Wang and Hao Liu
Mar. Drugs 2025, 23(6), 244; https://doi.org/10.3390/md23060244 - 9 Jun 2025
Cited by 1 | Viewed by 1051
Abstract
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for [...] Read more.
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for fucoxanthin accumulation using a three-factor, four-level orthogonal design. Furthermore, the underlying mechanisms related to photosynthetic physiology and gene regulation were explored. The results revealed that both glycine (Gly) and light intensity significantly enhanced fucoxanthin content (p < 0.05). The optimal condition (Combination C: 0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 12 h light/12 h dark) yielded a fucoxanthin content of 0.87 μg g−1, representing a 35% increase compared to the control. Meanwhile, Combination p (0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 24 h light/0 h dark) significantly improved cell density (5.11 × 106 cells mL−1; +18%) and fucoxanthin yield (4.10 μg L−1; +47%). Analysis of photosynthetic parameters demonstrated that the non-photochemical quenching coefficient (NPQ) was suppressed. Gene expression profiling showed that Combination C upregulated photosynthetic genes (psbA, rbcL, rbcS) by up to 2.36-fold, while Combination P notably upregulated fcpb (7.59-fold), crtiso, and pds. Principal component analysis identified that rbcS and pds are key regulatory genes. These findings demonstrate that Gly, light intensity, and photoperiod synergistically regulate the expression of genes involved in photosynthesis and carotenoid biosynthesis, thereby promoting fucoxanthin accumulation. This work provides valuable insights and a theoretical basis for optimizing fucoxanthin production in support of marine drug development. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

13 pages, 2604 KB  
Article
Physiological and Ecological Responses of Anoectochilus formosanus to Different Light Intensities
by Rui Li, Caihui Cen, Xuan Chu, Hongyu Wei, Yinghui Mu, Song Gu, Hongli Liu and Zhiyu Ma
Agriculture 2025, 15(7), 705; https://doi.org/10.3390/agriculture15070705 - 26 Mar 2025
Cited by 1 | Viewed by 821
Abstract
Anoectochilus formosanus is a rare medicinal plant with anti-inflammatory, antioxidant, hepatoprotective, and immunomodulatory properties. Its morphological growth and accumulation of medicinal compounds are strongly influenced by environmental factors such as light intensity. To investigate the physiological and ecological responses of Anoectochilus formosanus to varying [...] Read more.
Anoectochilus formosanus is a rare medicinal plant with anti-inflammatory, antioxidant, hepatoprotective, and immunomodulatory properties. Its morphological growth and accumulation of medicinal compounds are strongly influenced by environmental factors such as light intensity. To investigate the physiological and ecological responses of Anoectochilus formosanus to varying light intensities, we examined physiological, morphological, and growth parameters across different growth stages under five different light intensities. Correlation, plasticity, and principal component analysis (PCA) were performed. The results showed that high and low light intensities altered physiological and biochemical indicators at different stages. Leaf area, fresh weight, dry weight, stem thickness, and non-photochemical quenching (NPQ) increased with increasing light intensity, whereas chlorophyll fluorescence parameters (Fv, Fm, and Fv/Fm) and flavonoid content decreased, reflecting reduced light capture and consumption under high light intensities. The phenotypic plasticity index of the morphological traits (<0.5) was lower than that of the photosynthetic physiological parameters (>0.5), indicating a greater plasticity of the photosynthetic traits. Biomass indicators—leaf area ratio and relative growth rate—were strongly correlated, driving the response to light intensity. Growth and biomass allocation peaked at moderate light intensity (70 μmol·m−2·s−1). These findings highlight the conservative strategy employed by A. formosanus for slow carbon use under low-light conditions, and the adventurous strategy employed for rapid carbon use under strong light, offering insights into efficient cultivation practices. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

25 pages, 1944 KB  
Article
Physiological Effects of Mercury on Handroanthus impetiginosus (Ipê Roxo) Plants
by Evandro Alves de Oliveira, Daniela Roberta Borella, Vinícius José Santos Lopes, Leandro Dênis Battirola, Ricardo Lopes Tortorela de Andrade and Andréa Carvalho da Silva
Agronomy 2025, 15(3), 736; https://doi.org/10.3390/agronomy15030736 - 19 Mar 2025
Cited by 3 | Viewed by 1337
Abstract
Mercury (Hg) poses significant risks to human health, the environment, and plant physiology, with its effects influenced by chemical form, concentration, exposure route, and organism vulnerability. This study evaluates the physiological impacts of Hg on Handroanthus impetiginosus (Ipê Roxo) seedlings through SPAD index [...] Read more.
Mercury (Hg) poses significant risks to human health, the environment, and plant physiology, with its effects influenced by chemical form, concentration, exposure route, and organism vulnerability. This study evaluates the physiological impacts of Hg on Handroanthus impetiginosus (Ipê Roxo) seedlings through SPAD index measurements, chlorophyll fluorescence analysis, and Hg quantification in plant tissues. Four-month-old seedlings were exposed for eight days to distilled water containing Hg at 0, 1, 3, 5, and 7 mg L−1. The SPAD index decreased by 28.17% at 3, 5, and 7 mg L−1, indicating reduced photosynthetic capacity. Chlorophyll a fluorescence analysis revealed a 50.58% decline in maximum efficiency (Fv/Fm) and a 58.33% reduction in quantum yield (ΦPSII) at 7 mg L−1, along with an 83.04% increase in non-photochemical quenching (qn), suggesting oxidative stress and PSII damage. Transpiration decreased by 26.7% at 1 mg L−1 and by 55% at 3, 5, and 7 mg L−1, correlating with Hg levels and leaf senescence. Absorption, translocation, bioconcentration, and bioaccumulation factors varied among treatments. Hg accumulated mainly in stems (40.23 μg g−1), followed by roots (0.77 μg g−1) and leaves (2.69 μg g−1), with limited translocation to leaves. These findings highlight Hg’s harmful effects on H. impetiginosus, an ecologically and commercially valuable species, addressing a gap in research on its Hg tolerance and phytoremediation potential. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

16 pages, 3259 KB  
Article
Elevated CO2 Shifts Photosynthetic Constraint from Stomatal to Biochemical Limitations During Induction in Populus tomentosa and Eucalyptus robusta
by Xianhui Tang, Jie Zhao, Jiayu Zhou, Qingchen Zhu, Xiyang Sheng and Chao Yue
Plants 2025, 14(1), 47; https://doi.org/10.3390/plants14010047 - 27 Dec 2024
Cited by 4 | Viewed by 1496
Abstract
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO2 concentration (Ca). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency [...] Read more.
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO2 concentration (Ca). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO2. In this study, we experimentally investigated the influence of elevated CO2 (from 400 to 800 μmol mol–1) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, Populus tomentosa and Eucalyptus robusta. The results show that elevated CO2 increased the steady-state photosynthesis rate (A) and decreased stomatal conductance (gs) and the maximum carboxylation rate (Vcmax) in both species. While E. robusta exhibited a decrease in the linear electron transport rate (J) and the fraction of open reaction centers in photosynthesis II (qL), P. tomentosa showed a significant increase in non-photochemical quenching (NPQ). With respect to non-steady-state photosynthesis, elevated CO2 significantly reduced the induction time of A following a shift from low to high light intensity in both species. Time-integrated limitation analysis during induction revealed that elevated CO2 reduces the relative impacts of stomatal limitations in both species, consequently shifting the predominant limitation on induction efficiency from stomatal to biochemical components. Additionally, species-specific changes in qL and NPQ suggest that elevated CO2 may increase biochemical limitation by affecting energy allocation between carbon fixation and photoprotection. These findings suggest that, in a future CO2-rich atmosphere, plants productivity under fluctuating light may be primarily constrained by photochemical and non-photochemical quenching. Full article
(This article belongs to the Special Issue Biological Signaling in Plant Development)
Show Figures

Figure 1

21 pages, 2272 KB  
Article
Physiological, Photosynthetic Characteristic and Transcriptome Analysis of PsnWRKY70 Transgenic Populus simonii × Populus nigra Under Salt Stress
by Hui Zhao, Wenhu Wang, Yujie Fan, Guifeng Liu, Shaokang Guo and Guoqiang Fan
Int. J. Mol. Sci. 2025, 26(1), 81; https://doi.org/10.3390/ijms26010081 - 25 Dec 2024
Cited by 2 | Viewed by 1305
Abstract
The PsnWRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of Populus simonii × Populus nigra in our previous research, and we also produced several PsnWRKY70 overexpression (OEXs) and RNAi suppression (REXs) P. simonii [...] Read more.
The PsnWRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of Populus simonii × Populus nigra in our previous research, and we also produced several PsnWRKY70 overexpression (OEXs) and RNAi suppression (REXs) P. simonii × P. nigra lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na+ and K+ content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, Pn; stomatal conductance, Gs; intercellular CO2 concentration, Ci; transpiration rate, Tr), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), Fv/Fm; actual efficiency of PSII, ΦPSII; photochemical quenching coefficient, qP; non-photochemical quenching, NPQ; the photosynthetic light-response curves of ΦPSII and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress. Photosynthesis parameter (Pn, Gs, Tr and Ci) and chlorophyll fluorescence parameter (ETR, Fv/Fm, ΦPSII qP and NPQ) detection results indicate that the REX lines exhibited much better photosynthetic adaptability than NT and OEX lines during salt stress. The photosynthetic light-response curves of ΦPSII and ETR of NT, OEX and REX lines indicate that REXs exhibited better ability to activate the photosynthetic protection mechanism and adapt to a certain degree of strong light than NT and OEX lines under salt stress. RNA-seq analysis indicates that the DEGs between OEX1 vs. NT and REX1 vs. NT in different tissues (apical bud and fifth functional leaf) were all different in category and change trend. The expression of PsnWRKY70 was significantly up-regulated in both the apical bud and fifth functional leaf of OEX1, and showed no significant change (namely maintained low expression level) in both the apical bud and fifth functional leaf of REX1, thus indicating the negative regulation role of PsnWRKY70 in P. simonii × P. nigra under salt stress. Additionally, there were a lot of stress response-related TF genes (such as bHLH, WRKY, MYB, NAM and AP2/EREBP) and photosynthesis-related genes among all the DEGs. In REX1, the expression of three Photosystem I P700 chlorophyll a apoprotein A1 genes (Potri.003G065200, Potri.013G141800 and Potri.019G028100) and a Photosystem II protein D1 gene (Potri.013G138300) were significantly up-regulated after 6 days of salt stress. In OEX1, the Heterodimeric geranylgeranyl pyrophosphate synthase small subunit gene (Potri.015G043400) and Phospho-2-dehydro-3-deoxyheptonate aldolase 1 gene (Potri.007G095700) were significantly down-regulated after 6 days of salt stress. These photosynthesis-related genes are probably regulated by PsnWRKY70 TF in response to salt stress. In conclusion, the REX lines suffered less severe salt damage and exhibited better photosynthetic adaptability than NT and OEXs under salt stress. The differences among the DEGs between OEX1 vs. NT and REX1 vs. NT in apical bud and fifth functional leaf, and the significantly differentially expressed photosynthesis-related genes are probably the key clues for discovering the photosynthesis adaptability mechanism of PsnWRKY70 transgenic P. simonii × P. nigra under salt stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2826 KB  
Article
Effects of Drought Stress at the Booting Stage on Leaf Physiological Characteristics and Yield of Rice
by Xiaolong Yang, Xiuxiu Wang, Yang Li, Lantian Yang, Long Hu, Yuling Han and Benfu Wang
Plants 2024, 13(24), 3464; https://doi.org/10.3390/plants13243464 - 11 Dec 2024
Cited by 10 | Viewed by 2503
Abstract
Drought stress is a major environmental constraint that limits rice (Oryza sativa L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield. The results showed that drought stress [...] Read more.
Drought stress is a major environmental constraint that limits rice (Oryza sativa L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield. The results showed that drought stress would lead to a significant decrease in chlorophyll content and photosynthesis in rice leaves, which would affect rice yield. Three different rice varieties were used in this study, namely Hanyou73 (HY73), Huanghuazhan (HHZ), and IRAT109. Under drought stress, the chlorophyll content of all cultivars decreased significantly: 11.1% and 32.2% decreases in chlorophyll a and chlorophyll b in HHZ cultivars, 14.1% and 28.5% decreases in IRAT109 cultivars, and 22.9% and 18.6% decreases in HY73 cultivars, respectively. In addition, drought stress also led to a significant decrease in leaf water potential, a significant increase in antioxidant enzyme activity, and an increase in malondialdehyde (MDA) content, suggesting that rice activated a defense mechanism to cope with drought-induced oxidative stress. This study also found that drought stress significantly reduced the net photosynthetic rate and stomatal conductance of rice, which, in turn, affected the yield of rice. Under drought stress, the yield of the HHZ cultivars decreased most significantly, reaching 30.2%, while the yields of IRAT109 and HY73 cultivars decreased by 13.0% and 18.2%, respectively. The analysis of yield composition showed that the number of grains per panicle, seed-setting rate, and 1000-grain weight were the key factors affecting yield formation. A correlation analysis showed that there was a significant positive correlation between yield and net photosynthetic rate, stomatal conductance, chla/chlb ratio, Rubisco activity, and Fv/Fm, but there was a negative correlation with MDA and non-photochemical quenching (NPQ). In summary, the effects of drought stress on rice yield are multifaceted, involving changes in multiple agronomic traits. The results highlight the importance of selecting and nurturing rice varieties with a high drought tolerance, which should have efficient antioxidant systems and high photosynthetic efficiency. Future research should focus on the genetic mechanisms of these physiological responses in order to develop molecular markers to assist in the breeding of drought-tolerant rice varieties. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

25 pages, 39533 KB  
Article
Identification of High-Photosynthetic-Efficiency Wheat Varieties Based on Multi-Source Remote Sensing from UAVs
by Weiyi Feng, Yubin Lan, Hongjian Zhao, Zhicheng Tang, Wenyu Peng, Hailong Che and Junke Zhu
Agronomy 2024, 14(10), 2389; https://doi.org/10.3390/agronomy14102389 - 16 Oct 2024
Cited by 5 | Viewed by 1793
Abstract
Breeding high-photosynthetic-efficiency wheat varieties is a crucial link in safeguarding national food security. Traditional identification methods necessitate laborious on-site observation and measurement, consuming time and effort. Leveraging unmanned aerial vehicle (UAV) remote sensing technology to forecast photosynthetic indices opens up the potential for [...] Read more.
Breeding high-photosynthetic-efficiency wheat varieties is a crucial link in safeguarding national food security. Traditional identification methods necessitate laborious on-site observation and measurement, consuming time and effort. Leveraging unmanned aerial vehicle (UAV) remote sensing technology to forecast photosynthetic indices opens up the potential for swiftly discerning high-photosynthetic-efficiency wheat varieties. The objective of this research is to develop a multi-stage predictive model encompassing nine photosynthetic indicators at the field scale for wheat breeding. These indices include soil and plant analyzer development (SPAD), leaf area index (LAI), net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), stomatal conductance (Gsw), photochemical quantum efficiency (PhiPS2), PSII reaction center excitation energy capture efficiency (Fv’/Fm’), and photochemical quenching coefficient (qP). The ultimate goal is to differentiate high-photosynthetic-efficiency wheat varieties through model-based predictions. This research gathered red, green, and blue spectrum (RGB) and multispectral (MS) images of eleven wheat varieties at the stages of jointing, heading, flowering, and filling. Vegetation indices (VIs) and texture features (TFs) were extracted as input variables. Three machine learning regression models (Support Vector Machine Regression (SVR), Random Forest (RF), and BP Neural Network (BPNN)) were employed to construct predictive models for nine photosynthetic indices across multiple growth stages. Furthermore, the research conducted principal component analysis (PCA) and membership function analysis on the predicted values of the optimal models for each indicator, established a comprehensive evaluation index for high photosynthetic efficiency, and employed cluster analysis to screen the test materials. The cluster analysis categorized the eleven varieties into three groups, with SH06144 and Yannong 188 demonstrating higher photosynthetic efficiency. The moderately efficient group comprises Liangxing 19, SH05604, SH06085, Chaomai 777, SH05292, Jimai 22, and Guigu 820, totaling seven varieties. Xinmai 916 and Jinong 114 fall into the category of lower photosynthetic efficiency, aligning closely with the results of the clustering analysis based on actual measurements. The findings suggest that employing UAV-based multi-source remote sensing technology to identify wheat varieties with high photosynthetic efficiency is feasible. The study results provide a theoretical basis for winter wheat phenotypic monitoring at the breeding field scale using UAV-based multi-source remote sensing, offering valuable insights for the advancement of smart breeding practices for high-photosynthetic-efficiency wheat varieties. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

22 pages, 11148 KB  
Article
Exogenous Melatonin Modulates Photosynthesis and Antioxidant Systems for Improving Drought Tolerance of Sorghum Seedling
by Yushan Bo, Yifan Xing, Yu Wang, Wendong Gu, Xinyi Jiang, Jiarui Yu, Xiaolong Shi, Chunjuan Liu, Chang Liu and Yufei Zhou
Curr. Issues Mol. Biol. 2024, 46(9), 9785-9806; https://doi.org/10.3390/cimb46090581 - 3 Sep 2024
Cited by 7 | Viewed by 1964
Abstract
Sorghum faces significant production challenges due to drought stress. Melatonin has been demonstrated to play a crucial role in coping with stresses in plants. This study investigated the effect of exogenous melatonin on the sorghum seedling growth, photosynthetic capacity, and antioxidant system under [...] Read more.
Sorghum faces significant production challenges due to drought stress. Melatonin has been demonstrated to play a crucial role in coping with stresses in plants. This study investigated the effect of exogenous melatonin on the sorghum seedling growth, photosynthetic capacity, and antioxidant system under drought stress. The results indicated that drought stress inhibited the growth of sorghum seedlings by a marked reduction in leaf relative water content, along with a significant increase in both malondialdehyde and hydrogen peroxide content. The drought stress also led to a significant diminution in chlorophyll contents, thereby curtailing the capacity for light energy capture. Furthermore, the efficiency of the photosynthetic electron transport chain was adversely impacted. However, the application of exogenous melatonin notably mitigated the adverse effects on sorghum seedlings under the drought stress. Additionally, it stimulated an elevation in the photosynthetic rate and a decrease in non-photochemical quenching. The exogenous melatonin also facilitated the preservation of the chloroplast ultra-structure and boosted the activity of antioxidant enzymes and the content of non-enzymatic antioxidants. Cluster heat maps and principal component analysis further revealed significant correlations among various parameters under different treatment conditions. These results highlight melatonin’s role in improving sorghum’s drought tolerance, which is beneficial for agricultural management. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

22 pages, 1980 KB  
Article
The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle
by Nan Wang, Xiangrong Tian, Peipei Song, Wei Guo, Kaiyue Zhang, Juan Li and Zhanqiang Ma
Agronomy 2024, 14(8), 1821; https://doi.org/10.3390/agronomy14081821 - 17 Aug 2024
Cited by 1 | Viewed by 2215
Abstract
The widespread application of nanoparticles (NPs) in agriculture has not only enhanced the efficiency of agrochemical use but also introduced environmental pollution, potentially impacting human health through absorption and accumulation in edible plants. The purpose of this study was to evaluate the toxic [...] Read more.
The widespread application of nanoparticles (NPs) in agriculture has not only enhanced the efficiency of agrochemical use but also introduced environmental pollution, potentially impacting human health through absorption and accumulation in edible plants. The purpose of this study was to evaluate the toxic effects and ecological risks of Cu2O nanoparticles (nCu2O) in the life cycle of soybean, and to provide a theoretical basis for the safe application of NPs in agriculture. Soybeans were grown in natural soil modified with nCu2O, bulk cuprous oxide (bCu2O) and copper sulfate (CuSO4) at concentrations of 0, 50, 200, and 800 mg/kg. Samples and grains from treated soybeans were collected at the flowering, podding, and seed-filling stages for analysis. The results indicated that treatments with nCu2O, bCu2O, and Cu2+ reduced the chlorophyll content in soybean leaves, thereby affecting photosynthesis. Significant reductions were observed in the net photosynthetic rate (Pn), the transpiration rate (Tr), stomatal conductance (Gs), the quantum yield of photosystem II (Y(II)), photochemical quenching (qP), and the electron transport rate (ETR) at high concentrations. However, the toxicity of nCu2O to photosynthesis recovers as the plant grows. Almost all treatments increased the levels of antioxidant enzymes (SOD, POD, CAT) and reduced oxidative stress. In the nCu2O and bCu2O treatments, grain protein content was significantly reduced, while fat and water content increased. Phosphorus (P) content decreased, whereas sulfur (S), potassium (K), magnesium (Mg) and calcium (Ca) contents increased. The accumulation of copper in plants followed the order nCu2O > bCu2O > Cu2+, with the bCu2O treatment being slightly more toxic than the nCu2O treatment, and both being more toxic than the Cu2+ treatment. The above data indicated that nCu2O had a dose-dependent effect, which significantly inhibited soybean growth and changed grain quality at high concentrations. Full article
Show Figures

Figure 1

16 pages, 4692 KB  
Article
Effects of Low-Temperature Stress on Cold Resistance Biochemical Characteristics of Dali and Siqiu Tea Seedlings
by Ming Chen, Xizhe Zhu, Mengyue Hou, Wen Luo, Yongwen Jiang, Yaya Yu, Jinjin Wang, Haibo Yuan, Xiaoxia Huang and Jinjie Hua
Horticulturae 2024, 10(8), 823; https://doi.org/10.3390/horticulturae10080823 - 3 Aug 2024
Cited by 9 | Viewed by 2254
Abstract
Cold stress causes considerable damage to tender tea seedlings. Previous studies have explored changes in the physiological and biochemical factors of tea in response to cold stress; however, the mechanisms of cold resistance in ancient tea tree plants are unclear. The aim of [...] Read more.
Cold stress causes considerable damage to tender tea seedlings. Previous studies have explored changes in the physiological and biochemical factors of tea in response to cold stress; however, the mechanisms of cold resistance in ancient tea tree plants are unclear. The aim of this study was to analyze the effects of 0 °C cold stress for 15 days and 24 °C ambient temperature recovery for 5 days on the physiological and biochemical characteristics of two representative old tea varieties: Dali tea and Siqiu tea. The results revealed significant changes in antioxidant, photosynthetic efficiency, and physiological and biochemical indicators in response to cold stress, with the two species exhibiting different patterns. Cold stress decreased chlorophyll and carotene content, Fv/Fm, Y(II), non-photochemical quenching coefficient, photochemical quenching, and superoxide dismutase (SOD) activity, and increased intercellular CO2 concentration and ascorbate peroxidase activity. Siqiu tea showed a higher increase in soluble sugar content and antioxidant enzyme activity and a lower accumulation of malondialdehyde and minimal fluorescence (F0) than Dali, indicating a greater tolerance to cold stress. Based on partial least-squares discriminant analysis, six key differential physiological indicators of cold resistance—water-soluble sugar, F0, peroxidase, catalase, SOD, and gas conductance—were identified. Our findings provide technical support for identifying ways to protect ancient tea trees from extreme weather conditions. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 1921 KB  
Article
New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan
by Nurgul Yerezhepova, Meruyert Kurmanbayeva, Nina Terletskaya, Moldir Zhumagul, Marko Kebert, Milena Rašeta, Yusufjon Gafforov, Roza Jalmakhanbetova and Medeu Razhanov
Forests 2024, 15(5), 790; https://doi.org/10.3390/f15050790 - 30 Apr 2024
Cited by 6 | Viewed by 2502
Abstract
The adaptive potential of plants in urban environments, responding to factors like air pollution, electromagnetic radiation, and specific microclimates, remains insufficiently understood. Our study focused on two evergreen Cupressaceae family species, Thuja occidentalis L. and Platycladus orientalis L. Franco, which are commonly found [...] Read more.
The adaptive potential of plants in urban environments, responding to factors like air pollution, electromagnetic radiation, and specific microclimates, remains insufficiently understood. Our study focused on two evergreen Cupressaceae family species, Thuja occidentalis L. and Platycladus orientalis L. Franco, which are commonly found in Kazakhstan’s urban landscapes. Conducted in Almaty, one of Kazakhstan’s most polluted cities, our comparative analysis examined the anatomical features, photosynthetic activity, and secondary metabolite composition of these conifers. Both species exhibited xeromorphic traits, such as submerged stomata, resin passages, and a prominent leaf cuticle. T. occidentalis displayed higher photosynthetic activity values (quantum yield of photosystem II (YII), electron transport rate (ETR), and quantum yield of non-photochemical quenching (Y(NPQ))) than P. orientalis, while P. orientalis exhibited a higher quantum yield of non-regulated energy dissipation in PSII (Y(NO)) values. Chemical analysis revealed 31 components in T. occidentalis and 33 in P. orientalis, with T. occidentalis containing three times more thujone (16.42% and 5.18%, respectively) and a higher monosaccharide content (17.33% and 6.98%, respectively). T. occidentalis also contained 14.53% steroids, whereas P. orientalis showed no steroid presence. The cytotoxic activity of essential oils was determined by the survival of Artemia salina aquatic crustaceans, whereas tested essential oils from both species exhibited acute lethal toxicity to A. salina aquatic crustaceans across all tested concentrations. The connection between physiological traits, adaptation strategies, and cytotoxic effects offers a comprehensive view of the ecological and pharmacological importance of these two observed conifer species, highlighting their diverse roles in urban environments, as well as their potential medical uses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop