Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (721)

Search Parameters:
Keywords = photopolymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3103 KiB  
Article
Resin Composites with Anti-Biofouling Zwitterionic Polymer and Silica/Zirconia Filler for Digital Light Processing (DLP) of Dental Protheses
by Yun-Hee Lee, Jae-Min Jung, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(15), 3677; https://doi.org/10.3390/ma18153677 - 5 Aug 2025
Abstract
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine [...] Read more.
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine (MPC) with anti-biofouling behavior and γ-MPS-treated silica-zirconia powder for simultaneous mechanical reinforcement. The overall characterization of the resin composite was carried out using various contents of MPC incorporated into the resin (0–7 wt%) for examining the rheological behavior, photopolymerization, flexural strength/modulus, microstructure and anti-biofouling efficiency. The resin composite demonstrated a significant reduction in bacterial adhesion (97.4% for E. coli and 86.5% for S. aureus) and protein adsorption (reduced OD value from 1.3 ± 0.4 to 0.8 ± 0.2) with 7 wt% of MPC incorporation, without interfering with photopolymerization to demonstrate potential suitability for 3D printing without issues (p < 0.01, and p < 0.05, respectively). The incorporation and optimization of γ-MPS-treated silica-zirconia powder (10–40 vol%) enhanced mechanical properties, leading to a reasonable flexural strength (103.4 ± 6.1 MPa) and a flexural modulus (4.3 ± 0.4 GPa) at 30 vol% (n = 6). However, a further increase to 40 vol% resulted in a reduction in flexural strength and modulus; nevertheless, the results were above ISO 10477 standards for dental materials. Full article
(This article belongs to the Special Issue Innovative Restorative Dental Materials and Fabrication Techniques)
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Photocurable Resin Composites with Silica Micro- and Nano-Fillers for 3D Printing of Dental Restorative Materials
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
J. Compos. Sci. 2025, 9(8), 405; https://doi.org/10.3390/jcs9080405 - 1 Aug 2025
Viewed by 180
Abstract
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to [...] Read more.
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to formulate photocurable resins suitable for vat-photopolymerization. The rheological behavior of these liquid-state resins was assessed through viscosity measurements. Printed resin composites were fabricated and characterized for mechanical properties—including flexural strength, flexural modulus, and Vickers hardness—both before and after 8 weeks of water immersion. Physicochemical properties, such as water sorption, water solubility, and degree of conversion, were also evaluated. Additionally, shear bond strength to a resin-based luting agent was measured before and after artificial aging via thermocycling. A commercial dental CAD-CAM resin composite served as a reference material. Filler incorporation significantly improved the mechanical properties of the printed composites. The highest performance was observed in the composite containing 60 wt% micro-fillers, with a flexural strength of 168 ± 10 MPa, flexural modulus of 6.3 ± 0.4 GPa, and Vickers hardness of 63 ± 1 VHN, while the commercial CAD-CAM composite showed values of 152 ± 8 MPa, 7.9 ± 0.3 GPa, and 66 ± 2 VHN, respectively. Filler addition did not adversely affect the degree of conversion, although the relatively low conversion led to the elution of unpolymerized monomers and increased water solubility. The shear bond strength of the optimal printed composite remained stable after aging without silanization, demonstrating superior bonding performance compared with the CAD-CAM composite. These findings suggest that the developed 3D-printed resin composite is a promising candidate for dental restorative materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

24 pages, 738 KiB  
Review
Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
by Zihao Li, Yanlong Li, Mengting Chen, Weishan Li and Xiaoming Wei
Batteries 2025, 11(8), 282; https://doi.org/10.3390/batteries11080282 - 23 Jul 2025
Viewed by 370
Abstract
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, [...] Read more.
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, non-contact fabrication, ambient-temperature processing, and robust interlayer bonding. It then systematically summarizes photocured battery components, involving electrolytes, membranes, anodes, and cathodes, highlighting their design strategies. This review examines the impact of photocured materials on the battery’s properties, such as its conductivity, lithium-ion transference number, and mechanical strength, while examining how vat-photopolymerization-derived 3D architectures optimize ion transport and electrode–electrolyte integration. Finally, it discusses current challenges and future directions for photocuring-based battery manufacturing, emphasizing the need for specialized energy storage resins and scalable processes to bridge lab-scale innovations with industrial applications. Full article
Show Figures

Figure 1

14 pages, 3471 KiB  
Article
Dispersant-Induced Enhancement of Rheological Properties in Metal–Photopolymer Mixtures for 3D Printing
by Zhiyuan Qu, Guangchao Song, Josue Olortegui-Revoredo, Patrick Kwon and Haseung Chung
J. Manuf. Mater. Process. 2025, 9(7), 244; https://doi.org/10.3390/jmmp9070244 - 20 Jul 2025
Viewed by 335
Abstract
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless [...] Read more.
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless steel (SS) 420 metal powder suspensions for the SEAM process by improving powder loading, recyclability, flowability, and consequent final part density. The addition of dispersant allows for increased powder contents while preserving stable rheological properties, thereby enabling higher powder loading without compromising the rheological characteristics required in the SEAM process. Previously, our team implemented a two-step printing strategy to address the segregation issues during printing. Nonetheless, the semi-cured layer was not recyclable after printing, resulting in a significant amount of waste in the SEAM process. This, in turn, leads to a considerable increase in material costs. On the other hand, the addition of a dispersant has been shown to enhance suspension stability, enabling multiple cycles of reuse. This novel approach has been demonstrated to reduce material waste and lower production costs. The enhanced flowability guarantees uniform suspension spreading, resulting in defect-free layer deposition and superior process control. Moreover, the dispersant’s ability to impede particle agglomeration and promote powder loading contributes to the attainment of a 99.33% relative density in the final sintered SS420 parts, thereby markedly enhancing their mechanical integrity. These findings demonstrate the pivotal role of dispersants in refining the SEAM process, enabling the production of high-density, cost-effective metal components with superior material utilization and process efficiency. Full article
Show Figures

Figure 1

19 pages, 4325 KiB  
Article
The Impact of Nanoparticle Coatings on the Color of Teeth Restored Using Dental Adhesives Augmented with Magnetic Nanoparticles
by Carina Sonia Neagu, Andreea Codruta Novac, Cristian Zaharia, Meda-Lavinia Negrutiu, Izabell Craciunescu, Vlad Mircea Socoliuc, Catalin Nicolae Marin, Ionela-Amalia Bradu, Luminita Maria Nica, Marius Stef, Virgil-Florin Duma, Mihai Romînu and Cosmin Sinescu
Medicina 2025, 61(7), 1289; https://doi.org/10.3390/medicina61071289 - 17 Jul 2025
Viewed by 356
Abstract
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the [...] Read more.
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the penetration of the adhesive into dentinal tubules. However, the restoration’s color has been found to be affected by the MNPs. This study tests the hypothesis that MNP coating can alleviate the esthetic impact of magnetic dental adhesives. Materials and Methods: We synthesized Fe3O4 MNPs with silica coating (MNPs-SiO2), calcium-based coating (MNPs-Ca), and no coating. Their morphology was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Their chemical composition was assessed by energy-dispersive X-ray spectroscopy (EDX), and magnetic properties were measured using a vibrating sample magnetometer. FTIR spectroscopy was used to evaluate the polymerization of the MNP-laden adhesive. We prepared cavities in molar phantoms divided in four groups (n = 15 each) restored using the same adhesive with different MNP contents: Group 0 (G0)—no MNPs, G1—MNPs-SiO2, G2—MNPs-Ca, and G3—uncoated MNPs. The restoration’s color was quantified in the CIELAB color space using a dental spectrophotometer. Results: MNPs-SiO2 were globular, whereas MNPs-Ca had a cubic morphology. The SiO2 layer was 73.1 nm ± 9.9 nm thick; the Ca(OH)2 layer was 19.97 nm ± 2.27 nm thick. The saturation magnetization was 18.6 emu/g for MNPs-SiO2, 1.0 emu/g for MNPs-Ca, and 65.7 emu/g for uncoated MNPs. MNPs had a marginal effect on the adhesive’s photopolymerization. The mean color difference between G0 and G2 was close to the 50:50% acceptability threshold, whereas the other groups were far apart from G0. The mean whiteness index of G2 did not differ significantly from that of G0; G1 deviated marginally from G0, whereas G3 differed significantly from G0. Conclusions: These results suggest that MNP coating can mitigate the influence of MNP-laden dental adhesives on the color of restorations. Full article
(This article belongs to the Collection New Concepts for Dental Treatments and Evaluations)
Show Figures

Figure 1

25 pages, 5693 KiB  
Review
Research Progress on Vegetable Oil-Based UV-Curing Resins
by Wei Wang, Zhengru Hu and Wen Lei
Polymers 2025, 17(14), 1890; https://doi.org/10.3390/polym17141890 - 8 Jul 2025
Viewed by 486
Abstract
As a large class of natural organic compounds, vegetable oil is generally composed of 95% fatty acid triglycerides and very few complex non-triglycerides. It has many advantages, such as sufficient yield, low price, distinct structural characteristics, and biodegradability. UV curing technology is known [...] Read more.
As a large class of natural organic compounds, vegetable oil is generally composed of 95% fatty acid triglycerides and very few complex non-triglycerides. It has many advantages, such as sufficient yield, low price, distinct structural characteristics, and biodegradability. UV curing technology is known as a new method for the green industry in the 21st century due to its high efficiency, economy, energy conservation, high adaptability, and environmental friendliness. Therefore, UV-curable resins based on UV-curing technology has attracted widespread attention, converting epoxy soybean oil, castor oil, tung oil and other vegetable oils into high-performance plant oil-based UV-curable resins with higher molecular weight, multi-rigid ring and high reactivity, and the curing performance has been greatly improved, and the technology has been widely used in the field of polymer materials such as coatings, inks and adhesives. In this article, the recent research progress on this topic was summarized, and emphasis was put on the research on the resins from soybean oil and castor oil. Full article
Show Figures

Figure 1

18 pages, 2633 KiB  
Article
Optimizing Tannin-NaCMC Compositions via DOE for Enhanced Carbon Yield and Strength in 3D-Printed Porous Carbon
by Wonseok Tae, Hao Cheng, Sangyou Kim, Yeongjun Lee and Wonsuk Jung
Polymers 2025, 17(13), 1859; https://doi.org/10.3390/polym17131859 - 3 Jul 2025
Viewed by 372
Abstract
We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach [...] Read more.
We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach and regression modeling to evaluate the effects of varying blend compositions on carbon yield and mechanical strength. The results indicate that increasing the tannin content led to a maximum carbon yield of 13.43%, with an average porosity of approximately 80% and a compressive strength around 1 kPa. NaCMC was found to effectively control the resin viscosity within printable limits of 0.2537 Pa·s, although NaCMC indirectly improved carbonization efficiency through normalized yield analysis. This work highlights the synergistic role of bio-based polymers in tuning porous carbon properties. The findings provide a data-driven framework for designing sustainable polymer-derived carbon materials, bridging additive manufacturing with green chemistry. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

26 pages, 6855 KiB  
Article
Hydrogel Microarray for Bioanalytical Applications: Preliminary Study on Material Properties
by Weronika Kieres, Sonia Kudłacik-Kramarczyk, Joanna Marczyk, Celina Ziejewska, Anna Drabczyk, Robert P. Socha and Marcel Krzan
Materials 2025, 18(13), 3118; https://doi.org/10.3390/ma18133118 - 1 Jul 2025
Viewed by 408
Abstract
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior [...] Read more.
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior in physiological buffers, pH monitoring, contact angle measurements, and morphological assessment via SEM and optical microscopy. The results demonstrated that both alginate content and UV exposure time significantly influence the structural and functional properties of the hydrogels. The highest swelling ratio (2.32 g/g) was observed for the formulation containing 5% sodium alginate polymerized for 5 min (5SA_5), though this sample showed mechanical fragmentation during incubation. In contrast, the most balanced performance was achieved for the 10SA_15 formulation, which maintained structural integrity and exhibited a swelling ratio of 1.92 g/g after 9 days. The contact angle analysis revealed a surface hydrophilicity range from 50° to 100°, with the lowest angle (50°) recorded for 10SA_5, indicating high surface wettability. These findings confirm the suitability of such hydrogels for biomedical applications, particularly as absorbent, stable platforms for drug delivery or wound healing. Full article
Show Figures

Figure 1

8 pages, 759 KiB  
Article
Impact of Portable Radiometers on Irradiance Measurements of LED Photocuring Units
by Matías Mederos, Guillermo Grazioli, Elisa de León Cáceres, Andrés García, José Alejandro Rivera-Gonzaga, Rim Bourgi and Carlos Enrique Cuevas-Suárez
Optics 2025, 6(3), 28; https://doi.org/10.3390/opt6030028 - 30 Jun 2025
Viewed by 276
Abstract
Purpose: The aim of this in vitro study was to evaluate the influence of different models of commercially available portable dental radiometers on the measurement of light irradiance emitted by light-emitting diode (LED) photocuring units. Materials and Methods: Eight LED photocuring units, all [...] Read more.
Purpose: The aim of this in vitro study was to evaluate the influence of different models of commercially available portable dental radiometers on the measurement of light irradiance emitted by light-emitting diode (LED) photocuring units. Materials and Methods: Eight LED photocuring units, all emitting light in a single-wavelength spectrum, were tested. Light irradiance (mW/cm2) was measured using six portable dental radiometers: four digital models (D1–D4) and two analog models (A1, A2). Digital model D1 was used as the reference (control). All measurements were conducted under standardized conditions, and each LED–radiometer combination was tested in triplicate. Data were analyzed using Sigma Plot 12.0 (Palo Alto, CA, USA) to verify the assumptions of normality and homogeneity of variances. A one-way analysis of variance (ANOVA) was used to assess the effect of the radiometer model on irradiance values, followed by Tukey’s post hoc test for multiple comparisons. The significance level was set at α < 0.05. Results: No statistically significant difference in irradiance was found between D1 (control) and D2. However, significantly lower values were recorded with A2, while D3, D4, and A1 produced significantly higher irradiance values compared to the control (p < 0.05). Conclusion: Irradiance measurements can vary significantly depending on the radiometer model used. Clinicians should be aware of this variability and are encouraged to regularly check the irradiance of the light-curing units used in daily practice, ensure their proper maintenance, and implement periodic monitoring to maintain effective clinical performance. Full article
(This article belongs to the Special Issue Advanced Optical Imaging for Biomedicine)
Show Figures

Figure 1

11 pages, 1984 KiB  
Article
High-Resolution DLP 3D Printing for Complex Curved and Thin-Walled Structures at Practical Scale: Archimedes Microscrew
by Chih-Lang Lin, Jun-Ting Liu and Chow-Shing Shin
Micromachines 2025, 16(7), 762; https://doi.org/10.3390/mi16070762 - 29 Jun 2025
Viewed by 311
Abstract
As three-dimensional (3D) printing becomes increasingly prevalent in microfluidic system fabrication, the demand for high precision has become critical. Among various 3D printing technologies, light-curing-based methods offer superior resolution and are particularly well suited for fabricating microfluidic channels and associated micron-scale components. Two-photon [...] Read more.
As three-dimensional (3D) printing becomes increasingly prevalent in microfluidic system fabrication, the demand for high precision has become critical. Among various 3D printing technologies, light-curing-based methods offer superior resolution and are particularly well suited for fabricating microfluidic channels and associated micron-scale components. Two-photon polymerization (TPP), one such method, can achieve ultra-high resolution at the submicron level. However, its severely limited printable volume and high operational costs significantly constrain its practicality for real-world applications. In contrast, digital light processing (DLP) 3D printing provides a more balanced alternative, offering operational convenience, lower cost, and print dimensions that are more compatible with practical microfluidic needs. Despite these advantages, most commercial DLP systems still struggle to fabricate intricate, high-resolution structures—particularly curve, thin-walled, or hollow ones—due to over-curing and interlayer adhesion issues. In this study, we developed a DLP-based projection micro-stereolithography (PμSL) system with a simple optical reconfiguration and fine-tuned its parameters to overcome limitations in printing precise and intricate structures. For demonstration, we selected an Archimedes microscrew as the target structure, as it serves as a key component in microfluidic micromixers. Based on our previous study, the most effective design was selected and fabricated in accordance with practical microfluidic dimensions. The PμSL system developed in this study, along with optimized parameters, provides a reference for applying DLP 3D printing in high-precision microfabrication and advancing microfluidic component development. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

32 pages, 2930 KiB  
Review
3D Printing Continuous Fiber Reinforced Polymers: A Review of Material Selection, Process, and Mechanics-Function Integration for Targeted Applications
by Haoyuan Zheng, Shaowei Zhu, Liming Chen, Lianchao Wang, Hanbo Zhang, Peixu Wang, Kefan Sun, Haorui Wang and Chengtao Liu
Polymers 2025, 17(12), 1601; https://doi.org/10.3390/polym17121601 - 9 Jun 2025
Viewed by 2035
Abstract
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this [...] Read more.
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this technology. Material-wise, the analysis focuses on the performance characteristics and application scenarios of carbon fibers, glass fibers, and natural fibers, alongside discussions on the processing behaviors of thermoplastic matrices such as polyetheretherketone (PEEK). At the process level, the advantages and limitations of fused deposition modeling (FDM) and photopolymerization techniques are compared, with emphasis on their impact on fiber–matrix interfaces. The review further examines the regulatory mechanisms of fiber orientation, volume fraction, and other parameters on mechanical properties, as well as implementation pathways for functional designs, such as electrical conductivity and self-sensing capabilities. Application case studies in aerospace lightweight structures and automotive energy-absorbing components are comprehensively analyzed. Current challenges are highlighted, and future directions proposed, including artificial intelligence (AI)-driven process optimization and multi-material hybrid manufacturing. This review aims to provide a comprehensive assessment of the current achievements in 3D printing CFRP technology and a forward-looking analysis of existing challenges, offering a systematic reference for accelerating the transformation of 3D printing CFRP technology from laboratory research to industrial-scale implementation. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

24 pages, 10324 KiB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Viewed by 1342
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

24 pages, 3308 KiB  
Article
The Latest Achievements in the Design of Permanent Fillings for Conservative Dentistry Based on Indenoquinoxaline Derivatives as Photoinitiators of Visible-Light Polymerization: Mass and Colour Stability
by Ilona Pyszka, Oliwia Szczepańska and Beata Jędrzejewska
Int. J. Mol. Sci. 2025, 26(11), 5424; https://doi.org/10.3390/ijms26115424 - 5 Jun 2025
Viewed by 455
Abstract
The demand for polymer composite materials in the dental market is increasing every year. This rise is due to their excellent properties and ongoing technological advancements. The goal of this study was to develop new photoinitiators included in the liquid organic matrix, which [...] Read more.
The demand for polymer composite materials in the dental market is increasing every year. This rise is due to their excellent properties and ongoing technological advancements. The goal of this study was to develop new photoinitiators included in the liquid organic matrix, which is one of the main components of dental composites. Therefore, a series of compounds based on the indenoquinoxaline skeleton was synthesized, differing in the substituent. The spectroscopic properties of these compounds allowed their use as visible-light photoinitiators of radical polymerization in combination with (phenylthio)acetic acid. In addition to the polymerization kinetics, the lifetime and quantum yield of the triplet-state formation and the rate constants of its quenching by (phenylthio)acetic acid were determined. The durability of the designed composites was also assessed. Ageing tests included hydrothermal ageing, allowing for the determination of sorption, solubility, and mass change. Solutions imitating the oral cavity environment—distilled water, artificial saliva, n-heptane, and 3% acetic acid—as well as solutions containing pigments were used for these studies. Determination of the mass change and colour stability allowed for the assessment of how these materials react to long-term exposure in the oral environment. It was found that the solution simulating the natural oral environment has a significant impact on the hydrolytic stability and colour stability of the materials. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

12 pages, 1967 KiB  
Article
Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color
by Qingyan Zeng, Wei Liu, Yi Li and Yonggang Yang
Chemistry 2025, 7(3), 93; https://doi.org/10.3390/chemistry7030093 - 3 Jun 2025
Viewed by 550
Abstract
Cholesteric liquid crystal polymer network (CLCN) films with composite structural colors have potential applications in decoration and anti-counterfeiting. Herein, a thermochromic acrylate-based cholesteric liquid crystal mixture was prepared. The structural color of CLCN films can be controlled by the photopolymerization temperature. Based on [...] Read more.
Cholesteric liquid crystal polymer network (CLCN) films with composite structural colors have potential applications in decoration and anti-counterfeiting. Herein, a thermochromic acrylate-based cholesteric liquid crystal mixture was prepared. The structural color of CLCN films can be controlled by the photopolymerization temperature. Based on the oxygen inhibition of the acrylate group, CLCN films with double reflection bands were prepared using a two-step photopolymerization method. The distance between these two reflection bands was controlled by the polymerization temperatures of these two steps. Since golden colors are the most attractive for decoration, herein, colorful patterns with a golden structural color were prepared by controlling the polymerization temperatures. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Figure 1

21 pages, 18533 KiB  
Article
Calcium Phosphate Honeycomb Scaffolds with Tailored Microporous Walls Using Phase Separation-Assisted Digital Light Processing
by Gyu-Nam Kim, Jae-Hyung Park, Jae-Uk Song, Young-Hag Koh and Jongee Park
Materials 2025, 18(11), 2587; https://doi.org/10.3390/ma18112587 - 1 Jun 2025
Viewed by 593
Abstract
The present study reports on the manufacturing of biphasic calcium phosphate (BCP) honeycomb scaffolds with tailored microporous walls using phase separation-assisted digital light processing (PS-DLP). To create micropores in BCP walls, camphene was used as the pore-forming agent for preparing BCP suspensions, since [...] Read more.
The present study reports on the manufacturing of biphasic calcium phosphate (BCP) honeycomb scaffolds with tailored microporous walls using phase separation-assisted digital light processing (PS-DLP). To create micropores in BCP walls, camphene was used as the pore-forming agent for preparing BCP suspensions, since it could be completely dissolved in photopolymerizable monomers composed of triethylene glycol dimethacrylate (TEGDMA) and polyethylene glycol diacrylate (PEGDA) and then undergo phase separation when placed at 5 °C. Therefore, solid camphene crystals could be formed in phase-separated BCP layers and then readily removed via sublimation after the photopolymerization of monomer networks embedding BCP particles by DLP. This approach allowed for tight control over the microporosity of BCP walls by adjusting the camphene content. As the camphene content increased from 40 to 60 vol%, the microporosity increased from ~38 to ~59 vol%. Consequently, the overall porosity of dual-scale porosity scaffolds increased from ~51 to ~67 vol%, while their compressive strength decreased from ~70.4 to ~13.7 MPa. The mass transport ability increased remarkably with an increase in microporosity. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

Back to TopTop