Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Instruments
2.2. Preparation of the CLCN Films with Single Reflection Band
2.3. Preparation of the Broadband Reflective CLCN Films
2.4. Preparation of the CLCN Film with a Flower Pattern
2.5. Preparation of the CLCN Film with a Cloud Pattern by Screen Printing
2.6. DSC Curves of (R)-C6P and CLC Mixture
2.7. CD Spectra of (R)-C6P and CLC Mixture
3. Results and Discussion
3.1. CLCN Films with Single Reflection Band
3.2. CLCN Films with a Broad Reflection Band or Double Reflection Bands
3.3. CLCN Film with Flower Pattern or Cloud Pattern
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parker, A.R.; Martini, N. Structural Colour in Animals-Simple to Complex Optics. Opt. Laser Technol. 2006, 38, 315–322. [Google Scholar] [CrossRef]
- Thomas, K.R.; Kolle, M.; Whitney, H.M.; Glover, B.J.; Steiner, U. Function of Blue Iridescence in Tropical Understorey Plants. J. R. Soc. Interface 2010, 7, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Vignolini, S.; Rudall, P.J.; Rowland, A.V.; Reed, A.; Moyroud, E.; Faden, R.B.; Baumberg, J.J.; Glover, B.J.; Steiner, U. Pointillist Structural Color in Pollia Fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715. [Google Scholar] [CrossRef]
- Mendoza-Galvan, A.; Del Rio, L.F.; Jarrendahl, K.; Arwin, H. Graded Pitch Profile for the Helicoidal Broadband Reflector and Left-Handed Circularly Polarizing Cuticle of the Scarab Beetle Chrysina Chrysargyrea. Sci. Rep. 2018, 8, 6456. [Google Scholar] [CrossRef] [PubMed]
- Sinnott-Armstrong, M.A.; Middleton, R.; Ogawa, Y.; Jacucci, G.; Moyroud, E.; Glover, B.J.; Rudall, P.J.; Vignolini, S.; Donoghue, M.J. Multiple Origins of Lipid-Based Structural Colors Contribute to a Gradient of Fruit Colors in Viburnum (Adoxaceae). New Phytol. 2023, 237, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, N. Cholesteric Liquid Crystals for Color Information Technology. Adv. Mater. 2001, 13, 1135–1147. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chem. Rev. 2016, 116, 15089–15166. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric Liquid Crystals in Living Matter. Soft Matter 2017, 13, 4176–4209. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A. Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics. Sci. Rep. 2018, 6, 1800335. [Google Scholar] [CrossRef]
- Scarangella, A.; Soldan, V.; Mitov, M. Biomimetic Design of Iridescent Insect Cuticles with Tailored, Self-Organized Cholesteric Patterns. Nat. Commun. 2020, 11, 4108. [Google Scholar] [CrossRef]
- Balenko, N.V.; Shibaev, V.P.; Bobrovsky, A.Y. Mechano-Optical Response of Novel Polymer Composites Based on Elastic Polyurethane Matrix Filled with Low-Molar-Mass Cholesteric Droplets. Macromol. Mater. Eng. 2021, 306, 2100262. [Google Scholar] [CrossRef]
- Agha, H.; Geng, Y.; Ma, X.; Avşar, D.I.; Kizhakidathazhath, R.; Zhang, Y.S.; Tourani, A.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H.; et al. Unclonable Human-Invisible Machine Vision Markers Leveraging the Omnidirectional Chiral Bragg Diffraction of Cholesteric Spherical Reflectors. Light Sci. Appl. 2022, 11, 309. [Google Scholar] [CrossRef]
- Yin, K.; Hsiang, E.L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. Advanced Liquid Crystal Devices for Augmented Reality and Virtual Reality Displays: Principles and Applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef]
- Liu, T.; Lin, H.; Hou, D.; Wang, J.; Zeng, S.; Che, C.; Wu, X.; Guo, J. Electrically-Triggered Oblique Helicoidal Cholesterics with a Single-Layer Architecture for Next-Generation Full-Color Reflective Displays. Adv. Funct. Mater. 2024, 34, 2408855. [Google Scholar] [CrossRef]
- Chien, C.C.; Liu, J.H. Optical Behaviors of Cholesteric Liquid-Crystalline Polyester Composites with Various Chiral Photochromic Dopants. Langmuir 2015, 31, 13410–13419. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Polymer Network Film with Double Reflection Bands Prepared Using a Thermochromic Cholesteric Liquid Crystal Mixture. ACS Appl. Mater. Interfaces 2024, 16, 18001–18007. [Google Scholar] [CrossRef] [PubMed]
- Neville, A.C. Metallic Gold and Silver Colours in Some Insect Cuticles. J. Insect Physiol. 1977, 23, 1267–1274. [Google Scholar] [CrossRef]
- Seago, A.E.; Brady, P.; Vigneron, J.P.; Schultz, T.D. Gold Bugs and Beyond: A Review of Iridescence and Structural Colour Mechanisms in Beetles (Coleoptera). J. R. Soc. Interface 2009, 6, S165–S184. [Google Scholar] [CrossRef]
- Meyer, R.B. Effects of Electric and Magnetic Fields on the Structure of Cholesteric Liquid Crystals. Appl. Phys. Lett. 1968, 12, 281–282. [Google Scholar] [CrossRef]
- Gauza, S.; Wang, H.; Wen, C.H.; Wu, S.T.; Seed, A.J.; Dąbrowski, R. High Birefringence Isothiocyanato Tolane Liquid Crystals. Jpn. J. Appl. Phys. 2003, 42, 3463. [Google Scholar] [CrossRef]
- Gauza, S.; Wen, C.H.; Wu, S.T.; Janarthanan, N.; Hsu, C.S. Super High Birefringence Isothiocyanato Biphenyl-Bistolane Liquid Crystals. Jpn. J. Appl. Phys. 2004, 43, 7634–7638. [Google Scholar] [CrossRef]
- Broer, D.J.; Lub, J.; Mol, G.N. Wide-Band Reflective Polarizers from Cholesteric Polymer Networks with a Pitch Gradient. Nature 1995, 378, 467–469. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric Liquid Crystals with a Broad Light Reflection Band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Wang, L.; Yang, D.-k.; Yu, H.; Yang, H. Polymeric Infrared Reflective Thin Films with Ultra-Broad Bandwidth. Liq. Cryst. 2016, 43, 750–757. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Han, R.; Li, H.; Cao, H.; Chen, Y.; Wang, D.; Yang, Z.; He, W. Preparation of Cholesteric Polymer Networks with Broadband Reflection Memory Effect. Liq. Cryst. 2022, 49, 153–161. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Han, R.; Li, H.; Cao, H.; Chen, Y.; Yang, Z.; Wang, D.; He, W. Self-Diffusion Method for Broadband Reflection in Polymer-Stabilized Cholesteric Liquid Crystal Films. Liq. Cryst. 2022, 49, 494–503. [Google Scholar] [CrossRef]
- Han, R.; Zhang, X.; Li, H.; Cao, H.; Wang, H.; Yang, Z.; Wang, D.; He, W. Preparation of Polymer Stabilised Cholesteric Broadband Reflection Films Based on Zif-8 Assisted Bidirectional Diffusion Method. Liq. Cryst. 2023, 50, 307–318. [Google Scholar] [CrossRef]
- Miao, Z.; Liang, Z.; Wang, D. Broadband Reflective Films with Temperature Response Combined with Thermochromic Materials. Liq. Cryst. 2022, 49, 1633–1642. [Google Scholar] [CrossRef]
- Xu, Y.; He, W.; Sheng, X.; Yang, Z.; Cao, H.; Wang, D. Preparation and Properties of Broadband Reflective Cholesteric-Phase Liquid Crystal Films Based on Chiral and Achiral Bilayer Structures. J. Mater. Chem. C 2024, 12, 14978–14986. [Google Scholar] [CrossRef]
- Matranga, A.; Baig, S.; Boland, J.; Newton, C.; Taphouse, T.; Wells, G.; Kitson, S. Biomimetic Reflectors Fabricated Using Self-Organising, Self-Aligning Liquid Crystal Polymers. Adv. Mater. 2013, 25, 520–523. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Chen, Y.; Li, C.; Hou, G.; Liu, X.; Zhang, X.; He, W.; Yang, H. Broadband Beflection of Polymer-Stabilized Chiral Nematic Liquid Crystals Induced by a Chiral Azobenzene Compound. Chem. Commun. 2014, 50, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, T.; Ma, Z.; Wu, L.; Li, Y.; Liu, W.; Yang, Y. Polymerization-Induced Diffusion Driven the Formation of Cholesteric Liquid Crystal Polymer Network Film with Double Helical Pitches. J. Mater. Chem. C 2024, 12, 17960–17965. [Google Scholar] [CrossRef]
- Wang, T.; Li, R.; Liu, W.; Li, Y.; Yang, Y. Better Understanding of the Composite Colored Cholesteric Liquid Crystal Polymer Network Film Prepared through Polymerization-Induced Chiral Dopant Diffusion. ACS Appl. Opt. Mater. 2025, 3, 989–997. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Polymer-Stabilized Cholesteric Liquid Crystal Films with Double Reflection Bands Prepared Based on the Competition between Photopolymerization and Photoisomerization. ACS Appl. Mater. Interfaces 2023, 15, 44314–44321. [Google Scholar] [CrossRef]
- Wei, C.L.; Lin, Y.T.; Chang, J.H.; Chiang, I.H.; Lin, H.C. The First Blue Phase Reactive Monomers Containing a Bi-Mesogenic Core and Their Side-Chain Polymers. J. Mater. Chem. C 2015, 3, 4663–4669. [Google Scholar] [CrossRef]
- Mitov, M.; Dessaud, N. Cholesteric Liquid Crystalline Materials Reflecting More Than 50% of Unpolarized Incident Light Intensity. Liq. Cryst. 2007, 34, 183–193. [Google Scholar] [CrossRef]
- Escuti, M.J.; Cairns, D.R.; Crawford, G.P. Optical-Strain Characteristics of Anisotropic Polymer Films Fabricated from a Liquid Crystal Diacrylate. J. Appl. Phys. 2004, 95, 2386–2390. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, J.; Yao, Z.; Liu, W.; Li, Y.; Yang, Y. A Hyper-Reflective Cholesteric Liquid Crystal Polymer Network with Double Layers. New J. Chem. 2023, 47, 17261–17266. [Google Scholar] [CrossRef]
- Yang, T.; Yuan, D.; Liu, W.; Zhang, Z.; Wang, K.; You, Y.; Ye, H.; de Haan, L.T.; Zhou, G. Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Appl. Mater. Interfaces 2022, 14, 4588–4597. [Google Scholar] [CrossRef]
- Kutulya, L.; Vashchenko, V.; Semenkova, G.; Shkolnikova, N. Effect of Chiral Dopants Molecular Structure on Temperature Dependencies of Induced Cholesteric Helical Pitch. Mol. Cryst. Liq. Cryst. 1999, 331, 583–591. [Google Scholar] [CrossRef]
- Lub, J.; Recaj, V.; Puig, L.; Forcén, P.; Luengo, C. Synthesis, Properties and Photopolymerization of Liquid Crystalline Dioxetanes. Liq. Cryst. 2004, 31, 1627–1637. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Control the Structure of the Polyacrylate/Epoxy Resin Film through photopolymerisation. Liq. Cryst. 2024, 51, 223–232. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Y.; Wu, S.-T. Broadband Circular Polarizer using Stacked Chiral Polymer Films. Opt. Express 2007, 15, 6414–6419. [Google Scholar] [CrossRef] [PubMed]
- Balan, L.; Schneider, R.; Lougnot, D.J. A New and Convenient Route to Polyacrylate/Silver Nanocomposites by Light-Induced Cross-Linking Polymerization. Prog. Org. Coat. 2008, 62, 351–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Liu, W.; Li, Y.; Yang, Y. Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color. Chemistry 2025, 7, 93. https://doi.org/10.3390/chemistry7030093
Zeng Q, Liu W, Li Y, Yang Y. Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color. Chemistry. 2025; 7(3):93. https://doi.org/10.3390/chemistry7030093
Chicago/Turabian StyleZeng, Qingyan, Wei Liu, Yi Li, and Yonggang Yang. 2025. "Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color" Chemistry 7, no. 3: 93. https://doi.org/10.3390/chemistry7030093
APA StyleZeng, Q., Liu, W., Li, Y., & Yang, Y. (2025). Cholesteric Liquid Crystal Polymer Network Patterns with a Golden Structural Color. Chemistry, 7(3), 93. https://doi.org/10.3390/chemistry7030093