Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = photonic-integrated circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 (registering DOI) - 2 Aug 2025
Viewed by 177
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 (registering DOI) - 31 Jul 2025
Viewed by 385
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

15 pages, 6406 KiB  
Communication
Design and Static Analysis of MEMS-Actuated Silicon Nitride Waveguide Optical Switch
by Yan Xu, Tsen-Hwang Andrew Lin and Peiguang Yan
Micromachines 2025, 16(8), 854; https://doi.org/10.3390/mi16080854 - 25 Jul 2025
Viewed by 336
Abstract
This article aims to utilize a microelectromechanical system (MEMS) to modulate coupling behavior of silicon nitride (Si3N4) waveguides to perform an optical switch based on a directional coupling (DC) mechanism. There are two states of the switch. First state, [...] Read more.
This article aims to utilize a microelectromechanical system (MEMS) to modulate coupling behavior of silicon nitride (Si3N4) waveguides to perform an optical switch based on a directional coupling (DC) mechanism. There are two states of the switch. First state, a Si3N4 wire is initially positioned up suspended in the air. In the second state, this wire will be moved down to be placed between two arms of the DC waveguides, changing the coupling behavior to achieve bar and cross states of the optical switch function. In the future, the MEMS will be used to move this wire down. In this work, we present simulations of the two static states to optimize the DC structure parameters. Based on the simulated results, the device size is 8.8 μm × 55 μm. The insertion loss is calculated to be approximately 0.24 dB and 0.33 dB, the extinction ratio is approximately 24.70 dB and 25.46 dB, and the crosstalk is approximately −24.60 dB and −25.56 dB, respectively. In the C band of optical communication, the insertion loss ranges from 0.18 dB to 0.47 dB. As such, this device will exhibit excellent optical switch performance and provide advantages in many integrated optics-related optical systems applications. Furthermore, it can be used in optical communications, data centers, LiDAR, and so on, enhancing important reference value for such applications. Full article
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Inversely Designed Silicon Nitride Power Splitters with Arbitrary Power Ratios
by Yang Cong, Shuo Liu, Yanfeng Liang, Haoyu Wang, Huanlin Lv, Fangxu Liu, Xuanchen Li and Qingxiao Guo
Photonics 2025, 12(8), 744; https://doi.org/10.3390/photonics12080744 - 24 Jul 2025
Viewed by 213
Abstract
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The [...] Read more.
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The devices are designed with ultra-compact dimensions using three-dimensional finite-difference time-domain (3D FDTD) analysis and an inverse design algorithm. Within a 50 nm bandwidth (1525 nm to 1575 nm), we demonstrated a 1 × 2 OPS with splitting ratios of 1:1, 1:1.5, and 1:2; a 1 × 3 OPS with ratios of 1:2:1 and 2:1:2; and a 1 × 4 OPS with ratios of 1:1:1:1 and 2:1:2:1. The target splitting ratios are achieved by optimizing pixel distributions in the coupling region. The dimensions of the designed devices are 1.96 × 1.96 µm2, 2.8 × 2.8 µm2, and 2.8 × 4.2 µm2, respectively. The designed devices achieve transmission efficiencies exceeding 90% and exhibit excellent power splitting ratios (PSRs). Full article
Show Figures

Figure 1

36 pages, 5908 KiB  
Review
Exploring the Frontier of Integrated Photonic Logic Gates: Breakthrough Designs and Promising Applications
by Nikolay L. Kazanskiy, Ivan V. Oseledets, Artem V. Nikonorov, Vladislava O. Chertykovtseva and Svetlana N. Khonina
Technologies 2025, 13(8), 314; https://doi.org/10.3390/technologies13080314 - 23 Jul 2025
Viewed by 608
Abstract
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them [...] Read more.
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them ideal for next-generation computing, telecommunications, and quantum applications. Recent advancements in nanofabrication, nonlinear optics, and phase-change materials have facilitated the seamless integration of all-optical logic gates onto compact photonic chips, significantly enhancing performance and scalability. This paper explores the latest breakthroughs in photonic logic gate design, key material innovations, and their transformative applications. While challenges such as fabrication precision and electronic–photonic integration remain, integrated photonic logic gates hold immense promise for revolutionizing optical computing, artificial intelligence, and secure communication. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 301
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 287
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

14 pages, 26034 KiB  
Article
High-Performance Self-Powered Broadband Photodetectors Based on a Bi2Se3 Topological Insulator/ReSe2 Heterojunction for Signal Transmission
by Yun Wei, Peng Wan, Lijian Li, Tao He, Wanyu Ma, Tong Xu, Bingwang Yang, Shulin Sha, Caixia Kan and Mingming Jiang
Photonics 2025, 12(7), 709; https://doi.org/10.3390/photonics12070709 - 14 Jul 2025
Viewed by 194
Abstract
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 [...] Read more.
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 for self-powered broadband photodetectors with high sensitivity and fast response time. The Bi2Se3/ReSe2 heterojunction photodetector achieves broadband response spectra ranging for 375 nm to 1 μm. It demonstrates a significant responsivity of 64 mA/W at a wavelength of 600 nm (1 mW/cm2), exhibits a rapid response speed of 345 μs rise/336 μs fall time, and has a 3 dB bandwidth of 1.4 kHz under zero-bias conditions. The high performance can be attributed to the suitable energy band structure of Bi2Se3/ReSe2 and high carrier mobility in surface states of Bi2Se3. Excitingly, self-powered TIs photodetectors allow for high-quality signal transmission. The TIs employed in photodetectors can stimulate the production of new optoelectronic features, but they could also be used for highly integrated photonic circuits in the future. Full article
(This article belongs to the Special Issue New Perspectives in Photodetectors)
Show Figures

Figure 1

36 pages, 8164 KiB  
Review
Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices
by Hong Zhou, Dongxiao Li and Chengkuo Lee
AI Sens. 2025, 1(1), 5; https://doi.org/10.3390/aisens1010005 - 14 Jul 2025
Viewed by 667
Abstract
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical [...] Read more.
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical microsystems to AI-driven smart devices. First, we examine classical optical sensing methodologies, including refractive index sensing, surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman spectroscopy (SERS), surface plasmon-enhanced chiral spectroscopy, and surface-enhanced fluorescence (SEF) spectroscopy, highlighting their principles, capabilities, and limitations. Subsequently, we analyze the architecture of PIC-based sensing platforms, emphasizing their miniaturization, scalability, and real-time detection performance. This review then introduces the emerging paradigm of in-sensor computing, where AI algorithms are integrated directly within photonic devices, enabling real-time data processing, decision making, and enhanced system autonomy. Finally, we offer a comprehensive outlook on current technological challenges and future research directions, addressing integration complexity, material compatibility, and data processing bottlenecks. This review provides timely insights into the transformative potential of AI-enhanced PIC sensors, setting the stage for future innovations in autonomous, intelligent sensing applications. Full article
Show Figures

Figure 1

33 pages, 5209 KiB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 808
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

14 pages, 23403 KiB  
Article
Flexibly Reconfigurable Kerr Micro-Comb Based on Cascaded Si3N4 Micro-Ring Filters
by Jieyu Yang, Guang Chen, Lidan Lu, Jianzhen Ou, Chao Mei, Yingjie Xu, Wenbo Bo, Peng Wang, Xinyi Li and Lianqing Zhu
Photonics 2025, 12(7), 661; https://doi.org/10.3390/photonics12070661 - 30 Jun 2025
Viewed by 348
Abstract
In recent years, micro-combs, due to their compact structure and high efficiency, have proven to be a practical solution for optical sources. In this paper, an approach to flexibly modulating micro-combs is proposed, and a simulation platform based on Si3N4 [...] Read more.
In recent years, micro-combs, due to their compact structure and high efficiency, have proven to be a practical solution for optical sources. In this paper, an approach to flexibly modulating micro-combs is proposed, and a simulation platform based on Si3N4 micro-combs with highly integrated, tunable, and reconfigurable features is built. By means of the Lugiato–Lefever equation model, the dynamic evolution process of micro-combs is analyzed, and a micro-ring resonator is designed with a free spectral range of 7.24 nm, an effective mode area of 1.0829µm2, and coherent comb lines spanning over 125 THz. Cascaded silicon nitride micro-ring filters are utilized to obtain reconfigurable modulation effects for Kerr-frequency micro-combs. Due to the significance of flexibly controlled optical sources with high-repetition rates and multiple channels for system-on-chip, our proposal has potential in photonic integrated circuit systems, such as high-density photonic computing and large-capacity optical communications, in the future. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits: Techniques, Insights and Devices)
Show Figures

Figure 1

14 pages, 4844 KiB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 576
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

11 pages, 2381 KiB  
Article
High-Performance and Fabrication-Tolerant 3 dB Adiabatic Coupler Based on Ultralow-Loss Silicon Waveguide by Tri-Layer Hard Mask Etching Process
by Ke Zhang, Yunchu Yu, Nanfei Zhu, Senlin Zhang, Jie Sun, Shijin Ding and David Wei Zhang
Nanomaterials 2025, 15(12), 947; https://doi.org/10.3390/nano15120947 - 18 Jun 2025
Viewed by 429
Abstract
Silicon photonics has emerged as critical for advancing photonic integrated circuits (PICs), but waveguide losses, primarily resulting from sidewall roughness, remain a primary challenge. In this work, we demonstrate a tri-layer hard mask etching process that produces strip silicon waveguides with propagation losses [...] Read more.
Silicon photonics has emerged as critical for advancing photonic integrated circuits (PICs), but waveguide losses, primarily resulting from sidewall roughness, remain a primary challenge. In this work, we demonstrate a tri-layer hard mask etching process that produces strip silicon waveguides with propagation losses as low as 1.48 dB/cm, i.e., a 37% improvement over the conventional Si3N4 hard mask technique. Based on the abovementioned approach, the fabricated 3 dB adiabatic directional couplers achieve a nearly ideal splitting ratio of 50.2:49.8 as well as an excess loss of 0.067 dB. These results indicate that the tri-layer hard mask etching process enables scalable and ultralow-loss PICs to be fabricated for high-speed optical interconnects and quantum computing systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

11 pages, 2884 KiB  
Article
The Design of a Circulator Based on Topological Photonic Crystals
by Yulin Zhao, Feng Liang, Jianfei Han, Jingsen Li, Haihua Hu, Weihao Zhang and Xiangjun Tan
Photonics 2025, 12(6), 581; https://doi.org/10.3390/photonics12060581 - 7 Jun 2025
Viewed by 422
Abstract
Topological photonic crystals have garnered significant attention due to their fascinating topological edge states. These states are robust against sharp bends and defects and exhibit the novel property of unidirectional transmission. In this study, we analyze the topological edge states of gyromagnetic topological [...] Read more.
Topological photonic crystals have garnered significant attention due to their fascinating topological edge states. These states are robust against sharp bends and defects and exhibit the novel property of unidirectional transmission. In this study, we analyze the topological edge states of gyromagnetic topological photonic crystals in analogy with the quantum Hall effect. Through expanding and shrinking six dielectric cylinders, the optical quantum spin Hall effect is achieved. And helical edge states with pseudo-spin are demonstrated. Owing to the novel topological properties of these edge states, robust waveguides are proposed. Furthermore, integrating these two distinct types of topological states, a novel circulator with topological characteristics is designed. These topologically protected photonic devices will be beneficial for developing integrated circuits. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

9 pages, 9442 KiB  
Communication
Temperature-Insensitive Cryogenic Packaging for Thin-Film Lithium Niobate Photonic Chips
by Yongteng Wang, Yuxin Ma, Xiaojie Wang, Ziwei Zhao, Yongmin Li and Tianshu Yang
Photonics 2025, 12(6), 545; https://doi.org/10.3390/photonics12060545 - 28 May 2025
Viewed by 870
Abstract
As photonic integrated circuits (PICs) gain prominence in quantum communication and quantum computation, the development of efficient and stable cryogenic packaging technologies becomes paramount. This paper presents a robust and scalable cryogenic packaging method for thin-film lithium niobate (TFLN) photonic chips. The packaged [...] Read more.
As photonic integrated circuits (PICs) gain prominence in quantum communication and quantum computation, the development of efficient and stable cryogenic packaging technologies becomes paramount. This paper presents a robust and scalable cryogenic packaging method for thin-film lithium niobate (TFLN) photonic chips. The packaged fiber-to-chip interface shows a coupling efficiency of 15.7% ± 0.3%, with minimal variation of ±0.5% as the temperature cools down from 295 K to 1.5 K. Furthermore, the packaged chip exhibits outstanding stability over multiple thermal cycling, highlighting its potential for practical applications in cryogenic environments. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop