In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Perovskite Nanoparticles
2.2. Preparation of Perovskite Solar Cell
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayan Koodali, D. Charting New Horizons: Unrivalled Efficiency and Stability in Perovskite Solar Cells. Phys. Status Solidi (a) 2024, 221, 2300782. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef] [PubMed]
- Szabó, G.; Park, N.-G.; De Angelis, F.; Kamat, P.V. Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits? ACS Energy Lett. 2023, 8, 3829–3831. [Google Scholar] [CrossRef]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Z.; Almalki, M.; Hope, M.A.; Zhao, J.; Gallet, T.; Krishna, A.; Mishra, A.; Eickemeyer, F.T.; Xu, J.; et al. Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface. Nat. Commun. 2024, 15, 7139. [Google Scholar] [CrossRef]
- Gong, C.; Li, H.; Xu, Z.; Li, Y.; Wang, H.; Zhuang, Q.; Wang, A.; Li, Z.; Guo, Z.; Zhang, C.; et al. Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport. Nat. Commun. 2024, 15, 9154. [Google Scholar] [CrossRef]
- Hadmojo, W.T.; Qureshi, M.S.; Nayfeh, A. Critical Roles of Nanoparticles in the Development of Perovskite Solar Cells: A Review. Energy Fuels 2025, 39, 7147–7166. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, G.S.; Jung, H.S. Managing the lifecycle of perovskite solar cells: Addressing stability and environmental concerns from utilization to end-of-life. eScience 2024, 4, 100243. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Haque, M.A.; Sheikh, A.D.; Guan, X.; Wu, T. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1602803. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Xue, Z.; Wang, T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 2020, 6, eaba1321. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhao, X.; Huang, H.; Wu, D.; Zhu, P.; Li, D.; Fan, B.; Qiu, Y.; Yang, Y.; Geng, Q.; et al. Flocculating-Regulated TiO2 Deposition Enables the Synergistic Effect of Doping for Perovskite Solar Cells with Efficiency Exceeding 25.8%. Adv. Energy Mater. 2025, 15, 2403200. [Google Scholar] [CrossRef]
- Li, X.; Yan, L.; Ding, C.; Song, H.; Yang, Y.; Ma, C.-Q. Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy Fuels 2023, 37, 876–901. [Google Scholar] [CrossRef]
- Alkahtani, M.; Alenzi, S.M.; Alsolami, A.; Alsofyani, N.; Alfahd, A.; Alzahrani, Y.A.; Aljuwayr, A.; Abduljawad, M. High-Performance and Stable Perovskite Solar Cells Using Carbon Quantum Dots and Upconversion Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14441. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Wright, M.; Niu, X.; Miller, P.; Wilshaw, P.R.; Bonilla, R.S. Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 2023, 31, 1478–1492. [Google Scholar] [CrossRef]
- Alghamdi, E.A.; Almalki, I.S.; Sai, R.; Alkahtani, M.H.; Yafi, G.S.; Alzahrani, Y.A.; Alenzi, S.M.; Aljuwayr, A.; Aldukhail, A.; Alzahrani, K.E.; et al. Enhancing efficiency through surface passivation of carbon-based perovskite solar cells. Mater. Today Sustain. 2024, 28, 101022. [Google Scholar] [CrossRef]
- Alkahtani, M.; Qasem, H.; Alenzi, S.M.; Alsofyani, N.; Alfahd, A.; Aljuwayr, A.; Hemmer, P.R. Electrodeposition of Lithium-Based Upconversion Nanoparticle Thin Films for Efficient Perovskite Solar Cells. Nanomaterials 2022, 12, 2115. [Google Scholar] [CrossRef]
- Alkahtani, M.; Almuqhim, A.A.; Qasem, H.; Alsofyani, N.; Alfahd, A.; Alenzi, S.M.; Aljuwayr, A.; Alzahrani, Y.A.; Al-Badri, A.; Alotaibi, M.H.; et al. Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells. Nanomaterials 2021, 11, 2909. [Google Scholar] [CrossRef]
- Osman, M.M.; Alanazi, A.Q.; Alanazi, T.I.; Alkahtani, M.H.; El-naggar, A.M.; Albassam, A.A.; Aldhafiri, A.M.; Al-Gawati, M.; Almalki, M.; Alenzi, S.M.; et al. Enhanced performance of perovskite solar cell via up-conversion YLiF4:Yb, Er nanoparticles. Sol. Energy Mater. Sol. Cells 2024, 273, 112955. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Jin, J.; Chen, X.; Cheng, Y.; Zheng, Y.; Liu, D.; Xu, L.; Song, H.; Dai, Q. Long-Lasting Nanophosphors Applied to UV-Resistant and Energy Storage Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700758. [Google Scholar] [CrossRef]
- Rahman, N.U.; Khan, W.U.; Li, W.; Khan, S.; Khan, J.; Zheng, S.; Su, T.; Zhao, J.; Aldred, M.P.; Chi, Z. Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. J. Mater. Chem. A 2019, 7, 322–329. [Google Scholar] [CrossRef]
- Hou, X.; Xuan, T.; Sun, H.; Chen, X.; Li, H.; Pan, L. High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Sol. Energy Mater. Sol. Cells 2016, 149, 121–127. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Y.; Lu, H.; Chen, C.; Liu, Y.; Bai, X.; Yang, L.; Yu, W.W.; Dai, Q.; Zhang, Y. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 2019, 59, 517–526. [Google Scholar] [CrossRef]
- Li, S.-S.; Chang, C.-H.; Wang, Y.-C.; Lin, C.-W.; Wang, D.-Y.; Lin, J.-C.; Chen, C.-C.; Sheu, H.-S.; Chia, H.-C.; Wu, W.-R.; et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy Environ. Sci. 2016, 9, 1282–1289. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Wang, L.; Fukaya, S.; Muslih, E.Y.; Kogo, A.; Nakano, M.; Karakawa, M.; Takahashi, K.; Tomita, K.; Nunzi, J.-M.; et al. Ionic Liquid-Assisted MAPbI3 Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 21194–21206. [Google Scholar] [CrossRef]
- Lin, D.; Fang, J.; Li, S.; Zhan, Z.; Li, H.; Wang, X.; Xie, G.; Wang, D.; Huang, N.; Peng, H.; et al. Surface Planarization-Epitaxial Growth Enables Uniform 2D/3D Heterojunctions for Efficient and Stable Perovskite Solar Modules. Adv. Sci. 2025, 12, 2407380. [Google Scholar] [CrossRef]
- Lee, J.-W.; Tan, S.; Han, T.-H.; Wang, R.; Zhang, L.; Park, C.; Yoon, M.; Choi, C.; Xu, M.; Liao, M.E.; et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 2020, 11, 5514. [Google Scholar] [CrossRef]
- Bhaumik, S.; Veldhuis, S.A.; Ng, Y.F.; Li, M.; Muduli, S.K.; Sum, T.C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N. Highly stable, luminescent core–shell type methylammonium–octylammonium lead bromide layered perovskite nanoparticles. Chem. Commun. 2016, 52, 7118–7121. [Google Scholar] [CrossRef]
- Das Adhikari, S.; Gualdrón Reyes, A.F.; Paul, S.; Torres, J.; Escuder, B.; Mora-Seró, I.; Masi, S. Impact of core–shell perovskite nanocrystals for LED applications: Successes, challenges, and prospects. Chem. Sci. 2023, 14, 8984–8999. [Google Scholar] [CrossRef]
- Xie, R.; Kolb, U.; Li, J.; Basché, T.; Mews, A. Synthesis and Characterization of Highly Luminescent CdSe−Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.H.; Yin, J.; Bakr, O.M.; Mohammed, O.F. Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals. ACS Energy Lett. 2021, 6, 1340–1357. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Li, L.; Xu, J.; Yu, S.; Gong, X.; Zhang, J.; Yin, H. Stable Luminescence of CsPbBr3/nCdS Core/Shell Perovskite Quantum Dots with Al Self-Passivation Layer Modification. ACS Appl. Mater. Interfaces 2019, 11, 40923–40931. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Susha, A.S.; Kershaw, S.V.; Hung, T.F.; Rogach, A.L. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature. Adv. Sci. 2015, 2, 1500194. [Google Scholar] [CrossRef]
- Luo, B.; Naghadeh, S.B.; Allen, A.L.; Li, X.; Zhang, J.Z. Peptide-Passivated Lead Halide Perovskite Nanocrystals Based on Synergistic Effect between Amino and Carboxylic Functional Groups. Adv. Funct. Mater. 2017, 27, 1604018. [Google Scholar] [CrossRef]
- Yan, N.; Yin, H.; Wang, Z.; Yuan, H.; Xin, Y.; Tang, Y. Role of Ammonium Derivative Ligands on Optical Properties of CH3NH3PbBr3 Perovskite Nanocrystals. Langmuir 2019, 35, 15151–15157. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kuo, Y.-C.; Li, Y.Z.; Waqas, M.; Xu, Y.-J.; Yanagida, M.; Nishihara, H.; Tsukagoshi, K.; Chou, M.M.C.; Shirai, Y.; et al. Coordination Nanosheets Stabilizing Efficient Tin-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2025, 17, 26813–26822. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chiang, C.-H.; Su, C.-J.; Chang, J.-W.; Lin, C.-Y.; Wei, C.-C.; Huang, S.-K.; Maeda, H.; Jian, W.-B.; Jeng, U.S.; et al. Terpyridine-zinc(ii) coordination nanosheets as modulators of perovskite crystallization to enhance solar cell efficiency. J. Mater. Chem. A 2023, 11, 7077–7084. [Google Scholar] [CrossRef]
- Dai, M.; Wang, Z.; Wang, F.; Qiu, Y.; Zhang, J.; Xu, C.-Y.; Zhai, T.; Cao, W.; Fu, Y.; Jia, D.; et al. Two-Dimensional van der Waals Materials with Aligned In-Plane Polarization and Large Piezoelectric Effect for Self-Powered Piezoelectric Sensors. Nano Lett. 2019, 19, 5410–5416. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.-G.; Garces, H.F.; Carl, A.D.; Ono, L.K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R.L.; et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Yuan, L.; Pan, Q.; Chen, S.; Hu, Y.; Chen, J.; Ma, W.; Zhang, Q.; Liu, Z.; et al. 3D/2D Core/Shell Perovskite Nanocrystals for High-Performance Solar Cells. Small 2023, 19, 2207312. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; He, W.; Qiu, S.; Wang, C.; Liu, X.; Forberich, K.; Brabec, C.J.; Mai, Y. Sequential Deposition of High-Quality Photovoltaic Perovskite Layers via Scalable Printing Methods. Adv. Funct. Mater. 2019, 29, 1900964. [Google Scholar] [CrossRef]
PSC Devices with PQDs (mg/mL) | PCE (%) | Voc (V) | Jsc (mA/cm2) | FF (%) |
---|---|---|---|---|
0 | 19.35 ± 0.45 | 1.120 ± 0.006 | 24.56 ± 0.10 | 70.33 ± 0.96 |
3 | 20.79 ± 0.23 | 1.122 ± 0.003 | 25.00 ± 0.16 | 74.14 ± 0.96 |
6 | 21.84 ± 0.38 | 1.128 ± 0.005 | 25.33 ± 0.18 | 76.45 ± 0.89 |
12 | 22.64 ± 0.37 | 1.131 ± 0.003 | 25.98 ± 0.11 | 77.07 ± 1.01 |
15 | 22.80 ± 0.25 | 1.137 ± 0.006 | 26.08 ± 0.23 | 76.88 ± 1.04 |
20 | 21.84 ± 0.27 | 1.135 ± 0.004 | 25.47 ± 0.23 | 75.55 ± 0.54 |
30 | 21.27 ± 0.32 | 1.134 ± 0.004 | 25.03 ± 0.21 | 74.95 ± 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, Y.A.; Alqahtani, R.M.; Alqarni, R.A.; Alnakhli, J.R.; Anezi, S.A.; Almalki, I.S.; Yafi, G.S.; Alenzi, S.M.; Aljuwayr, A.; Alessa, A.M.; et al. In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells. Nanomaterials 2025, 15, 978. https://doi.org/10.3390/nano15130978
Alzahrani YA, Alqahtani RM, Alqarni RA, Alnakhli JR, Anezi SA, Almalki IS, Yafi GS, Alenzi SM, Aljuwayr A, Alessa AM, et al. In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells. Nanomaterials. 2025; 15(13):978. https://doi.org/10.3390/nano15130978
Chicago/Turabian StyleAlzahrani, Yahya A., Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, and et al. 2025. "In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells" Nanomaterials 15, no. 13: 978. https://doi.org/10.3390/nano15130978
APA StyleAlzahrani, Y. A., Alqahtani, R. M., Alqarni, R. A., Alnakhli, J. R., Anezi, S. A., Almalki, I. S., Yafi, G. S., Alenzi, S. M., Aljuwayr, A., Alessa, A. M., Alkhaldi, H., Alanazi, A. Q., Almalki, M., & Alkahtani, M. H. (2025). In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells. Nanomaterials, 15(13), 978. https://doi.org/10.3390/nano15130978