Multiparty Quantum Private Comparison Using Rotation Operations
Abstract
:1. Introduction
2. Rotation Operation
3. The Proposed MQPC Protocol
3.1. The Protocol Description
- (1)
- Correctness. If each participant provides their respective inputs and performs the protocol faithfully, the comparison results announced by the third party are correct.
- (2)
- Privacy. The participant’s inputs remain confidential as long as the TP cannot collude with any participant, even in the presence of outsider eavesdropping or attacks from other participants aiming to learn about their inputs.
- (3)
- Fairness. All the parties are perfect peer entities, and they can receive the comparison result simultaneously, ensuring that no participant has an advantage over the other.
- (1)
- prepares decoy photons randomly selected from the set of four nonorthogonal states , aiming at detecting potential eavesdropping.
- (2)
- inserts the prepared decoy photons into their encrypted quantum sequence at random positions. This results in a new sequence denoted as .
- (3)
- keeps a record of the states and the exact positions of the decoy photons within the sequence .
- (4)
- sends to the TP via a quantum channel.
- (1)
- discloses the positions of the decoy photons in the sequence via the authenticated classical channel.
- (2)
- publishes the measurement basis used for each decoy photon. Z-basis is used for measuring states or and X-basis is used for measuring states or .
- (3)
- The TP performs Z-basis or X-basis measurements on these decoy photons in sequence according to the published bases.
- (4)
- The TP collects the measurement results and sends this information back to via the authenticated classical channel.
- (5)
- calculates the error rate based on the measurement results received from the TP. The error rate is calculated as the ratio of the number of incorrect measurements to the total number of measurements.
- (6)
- If the calculated error rate exceeds a pre-agreed threshold, the protocol is restarted from Step 5. Otherwise, announces her/his secret key to the TP via authenticated classical channel.
3.2. A Toy Example
- ;
- ;
- .
- ;
- ;
- .
- ;
- ;
- .
- ;
- ;
- .
- For 4th and 5th positions;
- For 1st and 3rd positions;
- For 2nd and 4th positions.
- ;
- ;
- .
- For {X, Z};
- For {Z, X};
- For {Z, X}.
- ;
- ;
- .
4. Analyses
4.1. Correctness
4.2. Security
- (1)
- Security against outsider eavesdropping: Any attempt at eavesdropping on the private information of the participants would be detectable, even if the outsider eavesdropper performs quantum-based attacks.
- (2)
- Security against attacks from the semi-honest trusted party (TP): The private information of the participants will not be leaked, even if the semi-honest TP utilizes the received information to deduce private information.
- (3)
- Security against attacks from participants: The participants’ inputs remain confidential, even if some participants collude to attempt to steal another participant’s inputs.
4.2.1. Outsider Eavesdropping
- (1)
- If and , then the probability that is 1.
- (2)
- If and , then the probability that is 0.
- (3)
- If and , then the probability that is 1/2.
4.2.2. Participant Attacks
4.3. Fairness
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Zhang, W.; van Leent, T.; Redeker, K.; Garthoff, R.; Schwonnek, R.; Fertig, F.; Eppelt, S.; Rosenfeld, W.; Scarani, V.; Lim, C.C.-W.; et al. A device-independent quantum key distribution system for distant users. Nature 2022, 607, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Nadlinger, D.P.; Drmota, P.; Nichol, B.C.; Araneda, G.; Main, D.; Srinivas, R.; Lucas, D.M.; Ballance, C.J.; Ivanov, K.; Tan, E.Y.-Z.; et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 2022, 607, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, L.; Tan, H.; Lu, Y.; Liao, S.-K.; Huang, J.; Li, H.; Wang, Z.; Mao, H.-K.; Yan, B.; et al. High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photon. 2023, 17, 416–421. [Google Scholar] [CrossRef]
- Basset, F.B.; Valeri, M.; Roccia, E.; Muredda, V.; Poderini, D.; Neuwirth, J.; Spagnolo, N.; Rota, M.B.; Carvacho, G.; Sciarrino, F.; et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 2021, 7, eabe6379. [Google Scholar] [CrossRef]
- Zahidy, M.; Ribezzo, D.; De Lazzari, C.; Vagniluca, I.; Biagi, N.; Müller, R.; Occhipinti, T.; Oxenløwe, L.K.; Galili, M.; Hayashi, T.; et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nat. Commun. 2024, 15, 1651. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, S.-B.; Chang, Y.; Qiu, C.; Liu, D.-M.; Hou, M. Quantum Key Agreement Protocol Based on Quantum Search Algorithm. Int. J. Theor. Phys. 2021, 60, 838–847. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, X.; Guo, G.-D.; Wang, L.-L.; Liu, X.-F. Multiparty quantum key agreement. Phys. Rev. A 2021, 104, 042421. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, S.; Chang, Y.; Yang, F.; Hou, M.; Cheng, W. Quantum secure direct communication based on quantum homomorphic encryption. Mod. Phys. Lett. A 2021, 36, 21502631. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Zhou, L.; Long, G.L. One-step quantum secure direct communication. Sci. Bull. 2022, 67, 367–374. [Google Scholar]
- Ying, J.W.; Wang, J.Y.; Xiao, Y.X.; Gu, S.P.; Wang, X.F.; Zhong, W.; Du, M.M.; Li, X.Y.; Shen, S.T.; Zhang, A.L.; et al. Passive-state preparation for quantum secure direct communication. Sci. China Phys. Mech. Astron. 2025, 68, 240312. [Google Scholar]
- Chen, Y.; Situ, H.; Huang, Q.; Zhang, C. A novel quantum private set intersection scheme with a semi-honest third party. Quantum Inf. Process. 2023, 22, 429. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, W.; Zhang, S. Quantum multi-party private set intersection using single photons. Phys. A Stat. Mech. Its Appl. 2024, 649, 129974. [Google Scholar] [CrossRef]
- Hou, M.; Wu, Y.; Zhang, S. Quantum Private Set Intersection Scheme Based on Bell States. Axioms 2025, 14, 120. [Google Scholar] [CrossRef]
- Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, 3–5 November 1982; p. 160. [Google Scholar]
- Boudot, F.; Schoenmakers, B.; Traoré, J. A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 2001, 111, 23–36. [Google Scholar] [CrossRef]
- Lo, H.-K. Insecurity of quantum secure computations. Phys. Rev. A 1997, 56, 1154–1162. [Google Scholar] [CrossRef]
- Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Rev. 1999, 41, 303–332. [Google Scholar] [CrossRef]
- Yang, Y.-G.; Wen, Q.-Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 2009, 42, 055305. [Google Scholar] [CrossRef]
- Huang, X.; Chang, Y.; Cheng, W.; Hou, M.; Zhang, S.-B. Quantum private comparison of arbitrary single qubit states based on swap test. Chin. Phys. B 2022, 31, 040303. [Google Scholar] [CrossRef]
- Hou, M.; Wu, Y. Single-photon-based quantum secure protocol for the socialist millionaires’ problem. Front. Phys. 2024, 12, 1364140. [Google Scholar] [CrossRef]
- Liu, B.; Gao, F.; Jia, H.-Y.; Huang, W.; Zhang, W.-W.; Wen, Q.-Y. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 2012, 12, 887–897. [Google Scholar] [CrossRef]
- Hou, M.; Wu, Y. Two-Party Quantum Private Comparison Protocol Based on Rotational Encryption. Appl. Sci. 2025, 15, 722. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, D.; Huang, W.; Jia, H.-Y.; Song, T.-T. Quantum private comparison employing single-photon interference. Quantum Inf. Process. 2017, 16, 180. [Google Scholar] [CrossRef]
- Kou, T.Y.; Che, B.C.; Dou, Z.; Chen, X.B.; Lai, Y.P.; Li, J. Efficient quantum private comparison protocol utilizing single photons and rotational encryption. Chin. Phys. B 2022, 31, 060307. [Google Scholar]
- Pan, H.M. Two-party quantum private comparison using single photons. Int. J. Theor. Phys. 2018, 57, 3389–3395. [Google Scholar]
- Wen, L.; Wang, Y.B.; Wei, C. Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 2012, 57, 583. [Google Scholar]
- Tseng, H.-Y.; Lin, J.; Hwang, T. New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 2012, 11, 373–384. [Google Scholar] [CrossRef]
- Hou, M.; Wu, Y. New Quantum Private Comparison Using Bell States. Entropy 2024, 26, 682. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, S.-B.; Chang, Y.; Hou, M.; Cheng, W. Efficient Quantum Private Comparison Based on Entanglement Swapping of Bell States. Int. J. Theor. Phys. 2021, 60, 3783–3796. [Google Scholar] [CrossRef]
- Lang, Y.F. Quantum private comparison using single bell state. Int. J. Theor. Phys. 2021, 60, 4030–4036. [Google Scholar]
- Lang, Y.F. Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 2020, 59, 833–840. [Google Scholar]
- Hou, M.; Wu, Y. Efficient Quantum Private Comparison with Unitary Operations. Mathematics 2024, 12, 3541. [Google Scholar] [CrossRef]
- Hou, M.; Wu, Y.; Zhang, S. Efficient Quantum Private Comparison Based on GHZ States. Entropy 2024, 26, 413. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, S.B.; Cheng, W. Quantum Private Comparison Based on GHZ-type States. In Proceedings of the 2021 IEEE AFRICON, Arusha, Tanzania, 13–15 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Ye, T.Y.; Ji, Z.X. Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 2017, 56, 1517–1529. [Google Scholar]
- Sun, Q. Quantum private comparison with six-particle maximally entangled states. Mod. Phys. Lett. A 2022, 37, 22501498. [Google Scholar] [CrossRef]
- Ji, Z.X.; Zhang, H.G.; Fan, P.R. Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A 2019, 34, 1950229. [Google Scholar]
- Fan, P.; Rahman, A.U.; Ji, Z.; Ji, X.; Hao, Z.; Zhang, H. Two-party quantum private comparison based on eight-qubit entangled state. Mod. Phys. Lett. A 2022, 37, 22500262. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, H.; Wang, H. Quantum Private Comparison Protocols With a Number of Multi-Particle Entangled States. IEEE Access 2019, 7, 44613–44621. [Google Scholar] [CrossRef]
- Jia, H.Y.; Wen, Q.Y.; Li, Y.B.; Gao, F. Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 2012, 51, 1187–1194. [Google Scholar]
- Pan, H.M. Quantum Private Comparison Based on χ-Type Entangled States. Int. J. Theor. Phys. 2017, 56, 3340–3347. [Google Scholar] [CrossRef]
- Ji, Z.X.; Ye, T.Y. Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 2016, 65, 711. [Google Scholar]
- Sun, Z.; Long, D. Quantum Private Comparison Protocol Based on Cluster States. Int. J. Theor. Phys. 2012, 52, 212–218. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Li, H.; Yang, Y.; Li, J. Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 2019, 18, 158. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, W.-B.; Zhang, S.-B.; Wang, H.-C.; Yan, L.-L.; Han, G.-H.; Sheng, Z.-W.; Huang, Y.-Y.; Suo, W.; Xiong, J.-X. Quantum Private Comparison of Equality Based on Five-Particle Cluster State. Commun. Theor. Phys. 2016, 66, 621–628. [Google Scholar] [CrossRef]
- Zha, X.W.; Yu, X.Y.; Cao, Y.; Wang, S.K. Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 2018, 57, 3874–3881. [Google Scholar]
- Zhou, M.K. Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 2018, 57, 42–47. [Google Scholar] [CrossRef]
- Xu, G.A.; Chen, X.B.; Wei, Z.H.; Li, M.J.; Yang, Y.X. An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 2012, 10, 1250045. [Google Scholar]
- Hou, M.; Wu, Y. Quantum Private Comparison Protocol with Cluster States. Axioms 2025, 14, 70. [Google Scholar] [CrossRef]
- Lin, S.; Sun, Y.; Liu, X.-F.; Yao, Z.-Q. Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 2012, 12, 559–568. [Google Scholar] [CrossRef]
- Guo, F.Z.; Gao, F.; Qin, S.J.; Zhang, J.; Wen, Q.Y. Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 2013, 12, 2793–2802. [Google Scholar] [CrossRef]
- Yu, C.H.; Guo, G.D.; Lin, S. Quantum private comparison with d-level single-particle states. Phys. Scr. 2013, 88, 065013. [Google Scholar] [CrossRef]
- Wu, W.Q.; Zhao, Y.X. Quantum private comparison of size using d-level Bell states with a semi-honest third party. Quantum Inf. Process. 2021, 20, 155. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Tsai, C.-W.; Hwang, T. Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 2013, 12, 1077–1088. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.B.; Wang, X.M. Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 2014, 53, 1085–1091. [Google Scholar]
- Wang, Q.L.; Sun, H.X.; Huang, W. Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 2014, 13, 2375–2389. [Google Scholar] [CrossRef]
- Ji, Z.X.; Yu, Y.T. Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process. 2017, 16, 177. [Google Scholar] [CrossRef]
- Ye, T.Y.; Hu, J.L. Multi-party quantum private comparison based on entanglement swapping of Bell entangled states within d-level quantum system. Int. J. Theor. Phys. 2021, 60, 1471–1480. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, W.; Zhang, S. Practical quantum protocols for blind millionaires’ problem based on rotation encryption and swap test. Phys. A Stat. Mech. Its Appl. 2024, 637, 129614. [Google Scholar] [CrossRef]
- Cao, H.; Ma, W. Multiparty Quantum Key Agreement Based on Quantum Search Algorithm. Sci. Rep. 2017, 7, srep45046. [Google Scholar] [CrossRef]
- Lin, J.; Tseng, H.-Y.; Hwang, T. Intercept–resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 2011, 284, 2412–2414. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, S.; Xia, J. Efficient Quantum Private Comparison Using Locally Indistinguishable Orthogonal Product States. In International Conference on Artificial Intelligence and Security, Proceedings of the 8th International Conference on Artificial Intelligence and Security, ICAIS 2022, Qinghai, China, 15–20 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 260–273. [Google Scholar]
- Yang, X.; Wei, K.; Ma, H.; Sun, S.; Du, Y.; Wu, L. Trojan horse attacks on counterfactual quantum key distribution. Phys. Lett. A 2016, 380, 1589–1592. [Google Scholar] [CrossRef]
Protocol | Quantum Resource Used | Unitary Operation for Users | Quantum Technology Used | Key Sharing | Quantum Measurement for Users | Quantum Measurement for TP | Qubit Efficiency |
---|---|---|---|---|---|---|---|
Ref. [55] | n-particle GHZ class states | No | The entanglement correlation | No | Single particle | No | |
Ref. [56] | d-dimensional basis state | Yes | Quantum Fourier transform and unitary operation | No | No | d-level single particle | |
Ref. [57] | d-level n-particle entangled state and d-level two-particle entangled state | No | Quantum Fourier transform | No | d-level single particle | d-level single particle | |
Ref. [58] | d-level n + 1-particle cat state and d-level two-particle Bell state | Yes | Quantum entanglement swapping | No | d-level two-particle Bell state | d-level n + 1-particle cat state | |
Ref. [59] | d-level two-particle Bell entangled state | Yes | Quantum entanglement swapping and unitary operation | No | d-level two-particle Bell entangled state | d-level two-particle Bell entangled state | |
Ours | Single photons | Yes | Rotation operation | Yes | No | Z-basis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.; Wu, Y. Multiparty Quantum Private Comparison Using Rotation Operations. Axioms 2025, 14, 274. https://doi.org/10.3390/axioms14040274
Hou M, Wu Y. Multiparty Quantum Private Comparison Using Rotation Operations. Axioms. 2025; 14(4):274. https://doi.org/10.3390/axioms14040274
Chicago/Turabian StyleHou, Min, and Yue Wu. 2025. "Multiparty Quantum Private Comparison Using Rotation Operations" Axioms 14, no. 4: 274. https://doi.org/10.3390/axioms14040274
APA StyleHou, M., & Wu, Y. (2025). Multiparty Quantum Private Comparison Using Rotation Operations. Axioms, 14(4), 274. https://doi.org/10.3390/axioms14040274