Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = photonic crystal nanocavities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4209 KiB  
Article
Lasing Emission from Soft Photonic Crystals for Pressure and Position Sensing
by Tsan-Wen Lu, Zhen-Yu Wang, Kuang-Ming Lin and Po-Tsung Lee
Nanomaterials 2023, 13(22), 2956; https://doi.org/10.3390/nano13222956 - 15 Nov 2023
Cited by 1 | Viewed by 1540
Abstract
In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform [...] Read more.
In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform pressure, laser emission from this nanocavity enables the detection of a minimum applied uniform pressure of 1.6‰ in experiments. Based on this feature, we further studied and elucidated the distinct behaviors in wavelength shifts when applying localized pressure at various positions relative to the PhC nanocavity. In experiments, by mapping wavelength shifts of the PhC nanolaser under localized pressure applied using a micro-tip at different positions, we demonstrate the nanocavity’s capability to detect minute position differences, with position-dependent minimum resolutions ranging from tens to hundreds of micrometers. Furthermore, we also propose and validate the feasibility of employing the strain amplifier as an effective waveguide for extracting the sensing signal from the nanocavity. This approach achieves a 64% unidirectional coupling efficiency for leading out the sensing signal to a specific strain amplifier. We believe these findings pave the way for creating a highly sensitive position-sensing module that can accurately identify localized pressure in a planar space. Full article
Show Figures

Figure 1

10 pages, 1745 KiB  
Article
Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers
by Daniel Carrasco, Eva Nieto-Pinero, Manuel Alonso-Orts, Rosalía Serna, Jose M. San Juan, María L. Nó, Jani Jesenovec, John S. McCloy, Emilio Nogales and Bianchi Méndez
Nanomaterials 2023, 13(6), 1126; https://doi.org/10.3390/nano13061126 - 21 Mar 2023
Cited by 10 | Viewed by 3416
Abstract
An accurate knowledge of the optical properties of β-Ga2O3 is key to developing the full potential of this oxide for photonics applications. In particular, the dependence of these properties on temperature is still being studied. Optical micro- and nanocavities are [...] Read more.
An accurate knowledge of the optical properties of β-Ga2O3 is key to developing the full potential of this oxide for photonics applications. In particular, the dependence of these properties on temperature is still being studied. Optical micro- and nanocavities are promising for a wide range of applications. They can be created within microwires and nanowires via distributed Bragg reflectors (DBR), i.e., periodic patterns of the refractive index in dielectric materials, acting as tunable mirrors. In this work, the effect of temperature on the anisotropic refractive index of β-Ga2O3 n(λ,T) was analyzed with ellipsometry in a bulk crystal, and temperature-dependent dispersion relations were obtained, with them being fitted to Sellmeier formalism in the visible range. Micro-photoluminescence (μ-PL) spectroscopy of microcavities that developed within Cr-doped β-Ga2O3 nanowires shows the characteristic thermal shift of red–infrared Fabry–Perot optical resonances when excited with different laser powers. The origin of this shift is mainly related to the variation in the temperature of the refractive index. A comparison of these two experimental results was performed by finite-difference time-domain (FDTD) simulations, considering the exact morphology of the wires and the temperature-dependent, anisotropic refractive index. The shifts caused by temperature variations observed by μ-PL are similar, though slightly larger than those obtained with FDTD when implementing the n(λ,T) obtained with ellipsometry. The thermo-optic coefficient was calculated. Full article
Show Figures

Figure 1

14 pages, 20394 KiB  
Article
POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities
by Xinyu Chen, Renjie Li, Yueyao Yu, Yuanwen Shen, Wenye Li, Yin Zhang and Zhaoyu Zhang
Nanomaterials 2022, 12(24), 4401; https://doi.org/10.3390/nano12244401 - 9 Dec 2022
Cited by 10 | Viewed by 4371
Abstract
We study a new technique for solving the fundamental challenge in nanophotonic design: fast and accurate characterization of nanoscale photonic devices with minimal human intervention. Much like the fusion between Artificial Intelligence and Electronic Design Automation (EDA), many efforts have been made to [...] Read more.
We study a new technique for solving the fundamental challenge in nanophotonic design: fast and accurate characterization of nanoscale photonic devices with minimal human intervention. Much like the fusion between Artificial Intelligence and Electronic Design Automation (EDA), many efforts have been made to apply deep neural networks (DNN) such as convolutional neural networks to prototype and characterize next-gen optoelectronic devices commonly found in Photonic Integrated Circuits. However, state-of-the-art DNN models are still far from being directly applicable in the real world: e.g., DNN-produced correlation coefficients between target and predicted physical quantities are about 80%, which is much lower than what it takes to generate reliable and reproducible nanophotonic designs. Recently, attention-based transformer models have attracted extensive interests and been widely used in Computer Vision and Natural Language Processing. In this work, we for the first time propose a Transformer model (POViT) to efficiently design and simulate photonic crystal nanocavities with multiple objectives under consideration. Unlike the standard Vision Transformer, our model takes photonic crystals as input data and changes the activation layer from GELU to an absolute-value function. Extensive experiments show that POViT significantly improves results reported by previous models: correlation coefficients are increased by over 12% (i.e., to 92.0%) and prediction errors are reduced by an order of magnitude, among several key metric improvements. Our work has the potential to drive the expansion of EDA to fully automated photonic design (i.e., PDA). The complete dataset and code will be released to promote research in the interdisciplinary field of materials science/physics and computer science. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 8732 KiB  
Article
Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network
by Renjie Li, Xiaozhe Gu, Yuanwen Shen, Ke Li, Zhen Li and Zhaoyu Zhang
Nanomaterials 2022, 12(8), 1372; https://doi.org/10.3390/nano12081372 - 16 Apr 2022
Cited by 14 | Viewed by 5559
Abstract
The design of nanophotonic structures based on deep learning is emerging rapidly in the research community. Design methods using Deep Neural Networks (DNN) are outperforming conventional physics-based simulations performed iteratively by human experts. Here, a self-adaptive and regularized DNN based on Convolutional Neural [...] Read more.
The design of nanophotonic structures based on deep learning is emerging rapidly in the research community. Design methods using Deep Neural Networks (DNN) are outperforming conventional physics-based simulations performed iteratively by human experts. Here, a self-adaptive and regularized DNN based on Convolutional Neural Networks (CNNs) for the smart and fast characterization of nanophotonic structures in high-dimensional design parameter space is presented. This proposed CNN model, named LRS-RCNN, utilizes dynamic learning rate scheduling and L2 regularization techniques to overcome overfitting and speed up training convergence and is shown to surpass the performance of all previous algorithms, with the exception of two metrics where it achieves a comparable level relative to prior works. We applied the model to two challenging types of photonic structures: 2D photonic crystals (e.g., L3 nanocavity) and 1D photonic crystals (e.g., nanobeam) and results show that LRS-RCNN achieves record-high prediction accuracies, strong generalizibility, and substantially faster convergence speed compared to prior works. Although still a proof-of-concept model, the proposed smart LRS-RCNN has been proven to greatly accelerate the design of photonic crystal structures as a state-of-the-art predictor for both Q-factor and V. It can also be modified and generalized to predict any type of optical properties for designing a wide range of different nanophotonic structures. The complete dataset and code will be released to aid the development of related research endeavors. Full article
Show Figures

Figure 1

16 pages, 4615 KiB  
Article
RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure
by Supat Chupradit, Shameen Ashfaq, Dmitry Bokov, Wanich Suksatan, Abduladheem Turki Jalil, Amer M. Alanazi and Mika Sillanpaa
Coatings 2021, 11(12), 1564; https://doi.org/10.3390/coatings11121564 - 20 Dec 2021
Cited by 41 | Viewed by 4386 | Retraction
Abstract
This study proposes a refractive index sensor for the simultaneous detection of cancer and diabetes based on photonic crystals (PhC). The proposed PhC composed of silicon rods in the air bed arranged in a hexagonal lattice forms the fundamental structure. Two tubes are [...] Read more.
This study proposes a refractive index sensor for the simultaneous detection of cancer and diabetes based on photonic crystals (PhC). The proposed PhC composed of silicon rods in the air bed arranged in a hexagonal lattice forms the fundamental structure. Two tubes are used to place the cancerous or diabetic samples for measurement. The sensor’s transmission characteristics are simulated and analyzed by solving Maxwell’s electromagnetic equations using the finite-difference time-domain approach for samples being studied. Therefore, diabetes and cancer are detected according to the changes in the refractive index of the samples using the laser source centered at 1550 nm. Considering the findings, the sensor’s geometry changes to adjust the suggested sensitivity and quality factor of structure. According to the results, transmission power ranges between 91 and 100% based on the sample. Moreover, sensitivity ranges from 1294 to 3080 nm/RIU and the maximum Figure of Mertie is nearly FOM = 1550.11 ± 150.11 RIU−1 with the detection in range 31 × 10−6 RIU. In addition, the small area (61.56 μm2) of biosensor results in its appropriateness for different uses in compact photonic integrated circuits. Next, we changed the shape of the dielectric rods and investigated their effects on the sensitivity parameter. The sensitivity and figure of merit after changes in the shape of dielectric rods and nanocavities are at best S = 20,393 nm/RIU and FOM = 9104.017 ± 606.93 RIU−1, receptively. In addition, the resolution detection range is 203.93 × 10−6 RIU. Full article
Show Figures

Figure 1

13 pages, 3935 KiB  
Article
Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity
by Yingke Ji, Binbin Wang, Liang Fang, Qiang Zhao, Fajun Xiao and Xuetao Gan
Materials 2021, 14(23), 7330; https://doi.org/10.3390/ma14237330 - 30 Nov 2021
Cited by 5 | Viewed by 2824
Abstract
On-chip exciting electric modes in individual plasmonic nanostructures are realized widely; nevertheless, the excitation of their magnetic counterparts is seldom reported. Here, we propose a highly efficient on-chip excitation approach of the magnetic dipole mode of an individual split-ring resonator (SRR) by integrating [...] Read more.
On-chip exciting electric modes in individual plasmonic nanostructures are realized widely; nevertheless, the excitation of their magnetic counterparts is seldom reported. Here, we propose a highly efficient on-chip excitation approach of the magnetic dipole mode of an individual split-ring resonator (SRR) by integrating it onto a photonic crystal nanocavity (PCNC). A high excitation efficiency of up to 58% is realized through the resonant coupling between the modes of the SRR and PCNC. A further fine adjustment of the excited magnetic dipole mode is demonstrated by tuning the relative position and twist angle between the SRR and PCNC. Finally, a structure with a photonic crystal waveguide side-coupled with the hybrid SRR–PCNC is illustrated, which could excite the magnetic dipole mode with an in-plane coupling geometry and potentially facilitate the future device application. Our result may open a way for developing chip-integrated photonic devices employing a magnetic field component in the optical field. Full article
(This article belongs to the Special Issue Microcavity Optics: Materials, Physics and Devices)
Show Figures

Figure 1

29 pages, 4883 KiB  
Review
Modal Properties of Photonic Crystal Cavities and Applications to Lasers
by Marco Saldutti, Meng Xiong, Evangelos Dimopoulos, Yi Yu, Mariangela Gioannini and Jesper Mørk
Nanomaterials 2021, 11(11), 3030; https://doi.org/10.3390/nano11113030 - 12 Nov 2021
Cited by 32 | Viewed by 6759
Abstract
Photonic crystal cavities enable strong light–matter interactions, with numerous applications, such as ultra-small and energy-efficient semiconductor lasers, enhanced nonlinearities and single-photon sources. This paper reviews the properties of the modes of photonic crystal cavities, with a special focus on line-defect cavities. In particular, [...] Read more.
Photonic crystal cavities enable strong light–matter interactions, with numerous applications, such as ultra-small and energy-efficient semiconductor lasers, enhanced nonlinearities and single-photon sources. This paper reviews the properties of the modes of photonic crystal cavities, with a special focus on line-defect cavities. In particular, it is shown how the fundamental resonant mode in line-defect cavities gradually turns from Fabry–Perot-like to distributed-feedback-like with increasing cavity size. This peculiar behavior is directly traced back to the properties of the guided Bloch modes. Photonic crystal cavities based on Fano interference are also covered. This type of cavity is realized through coupling of a line-defect waveguide with an adjacent nanocavity, with applications to Fano lasers and optical switches. Finally, emerging cavities for extreme dielectric confinement are covered. These cavities promise extremely strong light–matter interactions by realizing deep sub-wavelength mode size while keeping a high quality factor. Full article
(This article belongs to the Special Issue Semiconductor and Nanophotonic Devices)
Show Figures

Figure 1

8 pages, 3014 KiB  
Article
Simulated Study of High-Sensitivity Gas Sensor with a Metal-PhC Nanocavity via Tamm Plasmon Polaritons
by Liang Li and Haoyue Hao
Photonics 2021, 8(11), 506; https://doi.org/10.3390/photonics8110506 - 10 Nov 2021
Cited by 6 | Viewed by 2347
Abstract
An optical configuration was designed and simulated with a metal-photonic crystal (PhC) nanocavity, which had high sensitivity on gas detection. The simulated results shows that this configuration can generate a strong photonic localization through exciting Tamm plasmon polaritons. The strong photonic localization highly [...] Read more.
An optical configuration was designed and simulated with a metal-photonic crystal (PhC) nanocavity, which had high sensitivity on gas detection. The simulated results shows that this configuration can generate a strong photonic localization through exciting Tamm plasmon polaritons. The strong photonic localization highly increases the sensitivity of gas detection. Furthermore, this configuration can be tuned to sense gases at different conditions through an adjustment of the detection light wavelength, the period number of photonic crystal and the thickness of the gas cavity. The sensing routes to pressure variations of air were revealed. The simulation results showed that the detection precision of the proposed device for gas pressure could reach 0.0004 atm. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

9 pages, 3166 KiB  
Communication
Photonic Crystal Polymeric Thin-Film Dye-Lasers for Attachable Strain Sensors
by Tsan-Wen Lu, Yu-Kai Feng, Huan-Yeuh Chu and Po-Tsung Lee
Sensors 2021, 21(16), 5331; https://doi.org/10.3390/s21165331 - 6 Aug 2021
Cited by 2 | Viewed by 2692
Abstract
In this report, using two-dimensional photonic crystals (PhC) and a one-dimensional PhC nano-beam cavity, we realized the development of all-polymeric dye-lasers on a dye-doped, suspended poly-methylmethacrylate film with a wavelength-scale thickness. In addition to the characterization of basic lasing properties, we also evaluated [...] Read more.
In this report, using two-dimensional photonic crystals (PhC) and a one-dimensional PhC nano-beam cavity, we realized the development of all-polymeric dye-lasers on a dye-doped, suspended poly-methylmethacrylate film with a wavelength-scale thickness. In addition to the characterization of basic lasing properties, we also evaluated its capacity to serve as an attachable strain sensor. Through experimentation, we confirmed the stable lasing performances of the dye-laser attaching on a rough surface. Moreover, we also theoretically studied the wavelength responses of the utilized PhC resonators to stretching strain and further improved them via the concept of strain shaping. The attachability and high strain sensing response of the presented thin film PhC dye-lasers demonstrate their potential as attachable strain sensors. Full article
Show Figures

Figure 1

12 pages, 26204 KiB  
Article
A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
by Ji Xia, Fuyin Wang, Chunyan Cao, Zhengliang Hu, Heng Yang and Shuidong Xiong
Crystals 2021, 11(5), 462; https://doi.org/10.3390/cryst11050462 - 21 Apr 2021
Cited by 4 | Viewed by 3363
Abstract
Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a [...] Read more.
Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of πΩm/2π=4.148 MHz. The other nanobeam couples light to excite optical fundamental supermodes at 1542.858 and 1554.464 nm with a Qo larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 fm/Hz1/2. These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements. Full article
(This article belongs to the Special Issue Photonic Crystal Lasers)
Show Figures

Figure 1

15 pages, 3072 KiB  
Article
Doubly-Resonant Photonic Crystal Cavities for Efficient Second-Harmonic Generation in III–V Semiconductors
by Simone Zanotti, Momchil Minkov, Shanhui Fan, Lucio C. Andreani and Dario Gerace
Nanomaterials 2021, 11(3), 605; https://doi.org/10.3390/nano11030605 - 28 Feb 2021
Cited by 11 | Viewed by 4192
Abstract
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly-resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive [...] Read more.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly-resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly-resonant nanocavities with low mode volume and large quality factor via localized defects in a photonic crystal structure. We built on this approach by applying an evolutionary optimization algorithm in connection with Maxwell equations solvers; the proposed design recipe can be applied to any material platform. We explicitly calculated the second-harmonic generation efficiency for doubly-resonant photonic crystal cavity designs in typical III–V semiconductor materials, such as GaN and AlGaAs, while targeting a fundamental harmonic at telecom wavelengths and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realization of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies. Full article
(This article belongs to the Special Issue Nanostructured Materials for Photonics and Plasmonics)
Show Figures

Figure 1

10 pages, 3576 KiB  
Article
Tunable non-Hermiticity in Coupled Photonic Crystal Cavities with Asymmetric Optical Gain
by Kyoung-Ho Kim, Muhammad Sujak, Evan S. H. Kang and You-Shin No
Appl. Sci. 2020, 10(22), 8074; https://doi.org/10.3390/app10228074 - 14 Nov 2020
Cited by 1 | Viewed by 2714
Abstract
We report a rationally designed coupled photonic crystal (PhC) cavity system that comprises two identical linear defect nanocavities, and we numerically investigate the controllable non-Hermitian optical properties of the eigenmodes of the nanocavities. Three different coupling schemes, namely, the tuning of the sizes [...] Read more.
We report a rationally designed coupled photonic crystal (PhC) cavity system that comprises two identical linear defect nanocavities, and we numerically investigate the controllable non-Hermitian optical properties of the eigenmodes of the nanocavities. Three different coupling schemes, namely, the tuning of the sizes of shared airholes, vertical shifting of one of the nanocavities, and lateral shifting of one of the nanocavities, are proposed. We examined the ability of these schemes to control the coupling strength between component cavities, which is a key factor that determines the non-Hermiticity of the system. Moreover, we introduce controlled levels of spatially asymmetric optical gain to the coupled PhC cavity by employing the vertical shifting scheme and independently tuning the gain and loss of individual nanocavities. Consequently, we successfully achieve the correspondingly tuned non-Hermitian behaviors of complex eigenfrequencies, such as the controlled emergence of phase transitions at exceptional points and the asymmetric development of amplified and decayed eigenmodes. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

22 pages, 5224 KiB  
Article
Coupled Photonic Crystal Nanocavities as a Tool to Tailor and Control Photon Emission
by Annamaria Gerardino, Giorgio Pettinari, Niccolò Caselli, Silvia Vignolini, Francesco Riboli, Francesco Biccari, Marco Felici, Antonio Polimeni, Andrea Fiore, Massimo Gurioli and Francesca Intonti
Ceramics 2019, 2(1), 34-55; https://doi.org/10.3390/ceramics2010004 - 14 Jan 2019
Cited by 2 | Viewed by 4143
Abstract
In this review, we report on the design, fabrication, and characterization of photonic crystal arrays, made of two and three coupled nanocavities. The properties of the cavity modes depend directly on the shape of the nanocavities and on their geometrical arrangement. A non-negligible [...] Read more.
In this review, we report on the design, fabrication, and characterization of photonic crystal arrays, made of two and three coupled nanocavities. The properties of the cavity modes depend directly on the shape of the nanocavities and on their geometrical arrangement. A non-negligible role is also played by the possible disorder because of the fabrication processes. The experimental results on the spatial distribution of the cavity modes and their physical characteristics, like polarization and parity, are described and compared with the numerical simulations. Moreover, an innovative approach to deterministically couple the single emitters to the cavity modes is described. The possibility to image the mode spatial distribution, in single and coupled nanocavities, combined with the control of the emitter spatial position allows for a deterministic approach for the study of cavity quantum electrodynamics phenomena and for the development of new photonic-based applications. Full article
Show Figures

Figure 1

8 pages, 2564 KiB  
Article
Photonic Crystal Cavity with a Thin Low-Index Layer for Silicon-Compatible Nanolight Source
by Youngsoo Kim, Young Jin Lee, Seokhyeon Hong, Kihwan Moon and Soon-Hong Kwon
Appl. Sci. 2018, 8(9), 1552; https://doi.org/10.3390/app8091552 - 4 Sep 2018
Cited by 4 | Viewed by 4440
Abstract
The development of an efficient silicon-based nanolight source is an important step for silicon-based photonic integrated circuits. We propose a high quality factor photonic crystal nanocavity consisting of silicon and silica, which can be used as a silicon-compatible nanolight source. We show that [...] Read more.
The development of an efficient silicon-based nanolight source is an important step for silicon-based photonic integrated circuits. We propose a high quality factor photonic crystal nanocavity consisting of silicon and silica, which can be used as a silicon-compatible nanolight source. We show that this cavity can effectively confine lights in a low-index silica layer with a high confinement factor of 0.25, in which rare-earth dopants can be embedded as gain materials. The cavity is optimized to have a high quality factor of 15,000 and a mode volume of 0.01 μm3, while the resonance has a wavelength of 1537 nm. We expect that the high confinement factor in the thin silica layer and the high quality factor of the proposed cavity enable the cavity to be a good candidate for silicon-compatible nanolight sources for use in nanolasers or light-emitting diodes in the telecommunication wavelength region. Full article
(This article belongs to the Special Issue Novel Advances in Optical Micro- and Nano-Cavities)
Show Figures

Figure 1

11 pages, 4898 KiB  
Article
Cavity Design in Woodpile Based 3D Photonic Crystals
by Xu Zheng, Mike P. C. Taverne, Ying-Lung D. Ho and John G. Rarity
Appl. Sci. 2018, 8(7), 1087; https://doi.org/10.3390/app8071087 - 5 Jul 2018
Cited by 9 | Viewed by 5684
Abstract
In this paper, we present a design of a three-dimensional (3D) photonic crystal (PhC) nanocavity based on an optimized woodpile structure. By carefully choosing the position of the defect at the lattice center, we can create a cavity with high symmetry which supports [...] Read more.
In this paper, we present a design of a three-dimensional (3D) photonic crystal (PhC) nanocavity based on an optimized woodpile structure. By carefully choosing the position of the defect at the lattice center, we can create a cavity with high symmetry which supports well confined Gaussian-like cavity modes similar to those seen in a Fabry Perot laser resonator. We could also tune the resonant frequency of the cavity and manually choose the cavity mode order by adjusting the size of the defect at a chosen position. Full article
(This article belongs to the Special Issue Novel Advances in Optical Micro- and Nano-Cavities)
Show Figures

Graphical abstract

Back to TopTop