Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Temperature Dependence of the Refractive Index
3.2. Fabry–Perot Resonances in Ga2O3 Optical Cavities
3.3. FDTD Simulation of the Temperature-Dependent F-P Resonances’ Positions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.; Cary, P.H.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Tadjer, M.J. Toward gallium oxide power electronics. Science 2022, 378, 724. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wu, F.; Hu, H.; Wang, S.; Liu, A.; Guo, D. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater. Today Phys. 2022, 28, 100883. [Google Scholar] [CrossRef]
- Miyata, T.; Nakatani, T.; Minami, T. Gallium oxide as host material for multicolor emitting phosphors. J. Lumin. 2000, 87–89, 1183–1185. [Google Scholar] [CrossRef]
- Gollakota, P.; Dhawan, A.; Wellenius, P.; Lunardi, L.M.; Muth, J.F.; Saripalli, Y.N.; Peng, H.Y.; Everitt, H.O. Optical characterization of Eu-doped β-Ga2O3 thin films. App. Phys. Lett. 2006, 88, 221906. [Google Scholar] [CrossRef]
- Nogales, E.; Lopez, I.; Mendez, B.; Piqueras, J.; Lorenz, K.; Alves, E.; Garcia, J.A. Doped gallium oxide nanowires for photonics. Proc. SPIE Int. Soc. Opt. Eng. 2012, 8263, 82630B. [Google Scholar]
- Alonso-Orts, M.; Nogales, E.; San Juan, J.M.; No, M.L.; Piqueras, J.; Mendez, B. Modal Analysis of β-Ga2O3∶Cr Widely Tunable Luminescent Optical Microcavities. Phys. Rev. Appl. 2018, 9, 064004. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Orts, M.; Chilla, G.; Hotzel, R.; Nogales, E.; San Juan, J.M.; No, M.L.; Eickhoff, M.; Mendez, B. Near-UV optical cavities in Ga2O3 nanowires. Opt. Lett. 2021, 46, 278. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Orts, M.; Carrasco, D.; San Juan, J.M.; Nó, M.L.; de Andrés, A.; Nogales, E.; Mendez, B. Wide Dynamic Range Thermometer Based on Luminescent. Optical Cavities in Ga2O3:Cr Nanowires. Small 2022, 18, 2105355. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, I.; Bhatt, R.; Ganesamoorthy, S.; Saxena, A.; Karnal, A.K.; Gupta, P.K.; Sinha, A.K.; Deb, S.K. Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal. Appl. Opt. 2011, 50, 6006. [Google Scholar] [CrossRef] [PubMed]
- Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0–8.5 eV. Appl. Phys. Lett. 2017, 111, 082102. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.; Jia, Z.; Yin, Y.; Hu, Q.; Li, Y.; Wu, B.; Zhang, J.; Tao, X. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. J. Alloys Compd. 2017, 714, 453. [Google Scholar] [CrossRef]
- McCloy, J.S.; Jesenovec, J.; Dutton, B.; Pansegrau, C.; Remple, C.; Weber, M.; Swain, S.; McCluskey, M.; Scarpulla, M. Growth and defect characterization of doped and undoped β-Ga2O3 crystals. In Proceedings of the Proc. SPIE, 12002 SPIE OPTO: Oxide-based Materials and Devices XIII, San Francisco, CA, USA, 22 January–28 February 2022; p. 1200205. [Google Scholar]
- Schubert, M.; Korlacki, R.; Knight, S.; Hofmann, T.; Schöche, S.; Darakchieva, V.; Janzén, E.; Monemar, B.; Gogova, D.; Thieu, Q.-T.; et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 2016, 93, 125209. [Google Scholar] [CrossRef] [Green Version]
- Sturm, C.; Furthmüller, J.; Bechstedt, F.; Schmidt-Grund, R.; Grundmann, M. Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV. APL Mater. 2015, 3, 106106. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Murray, J.M.; Barnes, J.O.; Krein, D.M.; Schunemann, P.G.; Guha, S. Temperature dependent Sellmeier equation for the refractive index of GaP. Opt. Mater. Express. 2018, 8, 485. [Google Scholar] [CrossRef]
- Nogales, E.; García, J.A.; Méndez, B.; Piqueras, J. Red luminescence of Cr in β-Ga2O3 nanowires. J. Appl. Phys. 2007, 101, 033517. [Google Scholar] [CrossRef] [Green Version]
- Remple, C.; Barmore, L.M.; Jesenovec, J.; McCloy, J.S.; McCluskey, M.D. Photoluminescence spectroscopy of Cr3+ in β-Ga2O3 and (Al0.1Ga0.9)2O3. J. Vac. Sci. Technol. A 2023, 41, 022702. [Google Scholar] [CrossRef]
- Orlandi, F.; Mezzadri, F.; Calestani, G.; Boschi, F.; Fornari, R. Thermal expansion coefficients of β-Ga2O3 single crystals. Appl. Phys. Express 2015, 8, 111101. [Google Scholar] [CrossRef]
- Golz, C.; Galazka, Z.; Lähnemann, J.; Hortelano, V.; Hatami, F.; Masselink, W.T.; Bierwagen, O. Electrical conductivity tensor of β−Ga2O3 analyzed by van der Pauw measurements: Inherent anisotropy, off-diagonal element, and the impact of grain boundaries. Phys. Rev. Mater. 2019, 3, 124604. [Google Scholar] [CrossRef] [Green Version]
- Caffrey, D.; Norton, E.; Coileáin, C.Ó.; Smith, C.M.; Bulfin, B.; Farrell, L.; Shvets, I.V.; Fleischer, K. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices. Sci. Rep. 2016, 6, 33006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Coefficient | Quadratic Dependence with T | A | λi (μm) |
---|---|---|---|
εi,(100)(T) | 2.874 + 3.199 × 10−6 T + 3.732 × 10−9 T2 | 0.57 | 0.27 |
εi,(010)(T) | 3.046 + 4.416 × 10−5 T + 1.197 × 10−9 T2 | 0.57 | 0.27 |
εi,(001)(T) | 3.001 + 4.418 × 10−5 T + 7.600 × 10−10 T2 | 0.57 | 0.27 |
Temperature is in K. |
Peak # | T (K) | Center (nm) | Width (nm) |
---|---|---|---|
299 | 732.207 ± 0.002 | 0.648 ± 0.008 | |
3 | 338 | 732.6845 ± 0.0014 | 0.652 ± 0.007 |
360 | 733.066 ± 0.002 | 0.688 ± 0.009 | |
299 | 741.404 ± 0.002 | 0.531 ± 0.011 | |
4 | 338 | 741.880 ± 0.002 | 0.550 ± 0.010 |
360 | 742.262 ± 0.002 | 0.592 ± 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, D.; Nieto-Pinero, E.; Alonso-Orts, M.; Serna, R.; San Juan, J.M.; Nó, M.L.; Jesenovec, J.; McCloy, J.S.; Nogales, E.; Méndez, B. Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers. Nanomaterials 2023, 13, 1126. https://doi.org/10.3390/nano13061126
Carrasco D, Nieto-Pinero E, Alonso-Orts M, Serna R, San Juan JM, Nó ML, Jesenovec J, McCloy JS, Nogales E, Méndez B. Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers. Nanomaterials. 2023; 13(6):1126. https://doi.org/10.3390/nano13061126
Chicago/Turabian StyleCarrasco, Daniel, Eva Nieto-Pinero, Manuel Alonso-Orts, Rosalía Serna, Jose M. San Juan, María L. Nó, Jani Jesenovec, John S. McCloy, Emilio Nogales, and Bianchi Méndez. 2023. "Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers" Nanomaterials 13, no. 6: 1126. https://doi.org/10.3390/nano13061126
APA StyleCarrasco, D., Nieto-Pinero, E., Alonso-Orts, M., Serna, R., San Juan, J. M., Nó, M. L., Jesenovec, J., McCloy, J. S., Nogales, E., & Méndez, B. (2023). Temperature-Dependent Anisotropic Refractive Index in β-Ga2O3: Application in Interferometric Thermometers. Nanomaterials, 13(6), 1126. https://doi.org/10.3390/nano13061126