Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = photoelectrical measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7193 KiB  
Article
Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
by Gang Wang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv and Chenglei Fan
Materials 2025, 18(14), 3390; https://doi.org/10.3390/ma18143390 - 19 Jul 2025
Viewed by 251
Abstract
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed [...] Read more.
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed with base material. The defocus distance of the femtosecond laser predominantly influences the depth and phase composition of the WZ, while the weld spacing influences the crack distribution in the joint region. The maximum shear strength of 14.4 MPa was achieved at a defocusing distance of +0.1 mm (below the interface) and a weld spacing of 40 μm. The XRD stress measurements indicate that the defocusing distance mainly affects the stress along the direction of laser impact (DLI), whereas the weld spacing primarily influences the stress along the direction of spacing (DS). GPA results demonstrate that when the spacing is less than 30 μm, the non-uniform shrinkage inside the WZ induces tensile stress in the joint, leading to significant fluctuations in DS residual stress and consequently affecting the joint’s shear strength. This study investigates the effects of process parameters on the mechanical properties of dissimilar joints and, for the first time, analyzes the relationship between joint residual strain and femtosecond laser weld spacing, providing valuable insights for optimizing femtosecond laser welding processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 5026 KiB  
Article
Insulation Ability and Morphological Effect of ZrO2 Spacer Layer in Carbon-Based Multiporous Layered Electrode Perovskite Solar Cells
by Takaya Shioki, Naonari Izumoto, Fumitaka Iwakura, Ryuki Tsuji and Seigo Ito
Processes 2025, 13(7), 2264; https://doi.org/10.3390/pr13072264 - 16 Jul 2025
Viewed by 368
Abstract
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is [...] Read more.
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is important that detailed studies of the morphologies of mesoporous electrodes be carried out. In this study, we prepared five types of ZrO2 spacer layers for MPLE−PSCs, and the morphology of ZrO2 and device performance were evaluated using a scanning electron microscope, nitrogen adsorption/desorption measurements, electrode resistance measurements, UV-visible light reflectance measurements, and current density–voltage measurements. The results reveal that the adequate specific surface area and pore size distribution of mesoporous ZrO2 provided high insulation ability when used as spacers between electrodes and light absorbance, resulting in a 10.92% photoelectric conversion efficiency with a 23.22 mA cm−2 short-circuit current density. This information can serve as a guideline for designing morphologies useful for producing high-efficiency devices. Full article
(This article belongs to the Special Issue Sustainability of Perovskite Solar Cells)
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3
by Ying Lv, Menghan Duan, Jie An, Yunpeng Wang and Luchao Du
Nanomaterials 2025, 15(14), 1065; https://doi.org/10.3390/nano15141065 - 9 Jul 2025
Viewed by 405
Abstract
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell [...] Read more.
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell systems are the separation and transmission performances of charge carriers. Here, femtosecond time-resolved ultrafast spectroscopy was used to measure the interfacial charge transfer dynamics of different sizes of CsPbBr3 assembled with TiO2. The effect of perovskite size on the charge transfer is discussed. According to our experimental data analysis, the time constants of the interfacial electron transfer and charge recombination of the assembled systems of CsPbBr3 and titanium dioxide become larger when the size of the CsPbBr3 nanocrystals increases. We discuss the physical mechanism by which the size of perovskites affects the rate of charge transfer in detail. We expect that our experimental results provide experimental support for the application of novel quantum dots for solar cell materials. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 582
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

9 pages, 3091 KiB  
Article
Microwave Detection of Carbon Monoxide Gas via a Spoof Localized Surface Plasmons-Enhanced Cavity Antenna
by Meng Wang, Wenjie Xu and Shitao Sun
Micromachines 2025, 16(7), 790; https://doi.org/10.3390/mi16070790 - 2 Jul 2025
Viewed by 358
Abstract
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric [...] Read more.
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric variations through microwave-regime resonance frequency shifts, enabling CO/air differentiation with theoretically enhanced robustness and environmental adaptability. The designed system achieves measured figures of merit (FoMs) of 183.2 RIU−1, resolving gases with dielectric contrast below 0.1%. Experimental validation successfully discriminated CO (εr = 1.00262) from air (εr = 1.00054) under standard atmospheric pressure at 18 °C. Full article
(This article belongs to the Special Issue Current Research Progress in Microwave Metamaterials and Metadevices)
Show Figures

Figure 1

12 pages, 2688 KiB  
Communication
Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD
by Xiaochen Ma, Yuanheng Li, Xuan Liu, Deqiang Chen, Yong Le and Biao Zhang
Materials 2025, 18(13), 3073; https://doi.org/10.3390/ma18133073 - 28 Jun 2025
Viewed by 431
Abstract
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O [...] Read more.
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O3 (0001) by metal–organic chemical vapor deposition (MOCVD). The effects of W doping on the structural, morphology, and photoelectrical properties of the obtained films were studied. The results showed that all W-doped films were n-type semiconductors. The XRD measurement result exhibited that the increase in the W doping concentration leads to the changes in the preferred growth crystal plane of the films from δ-Ta2O5 (101¯1) to (0001). The 1.5% W-doped film possessed the best crystal quality and conductivity. The Hall measurement showed that the minimum resistivity of the film was 2.68 × 104 Ω∙cm, and the maximum carrier concentration was 7.39 × 1014 cm3. With the increase in the W concentration, the surface roughness of the film increases, while the optical bandgap decreases. The optical band gap of the 1.5% W-doped film was 3.92 eV. The W doping mechanisms were discussed. Full article
Show Figures

Figure 1

19 pages, 5033 KiB  
Article
Development and Verification of Sampling Timing Jitter Noise Suppression System for Phasemeter
by Tao Yu, Ke Xue, Hongyu Long, Mingzhong Pan, Zhi Wang and Yunqing Liu
Photonics 2025, 12(6), 623; https://doi.org/10.3390/photonics12060623 - 19 Jun 2025
Viewed by 322
Abstract
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the [...] Read more.
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the phasemeter, the phase measurement noise should reach 2π μrad/Hz1/2@(0.1 mHz–1 Hz). The heterodyne interference signal first passes through the quadrant photoelectric detector (QPD) to achieve photoelectric conversion, then passes through the analog-to-digital converter (ADC) to achieve analog and digital conversion, and finally passes through the digital phase-locked loop (DPLL) for phase locking. The sampling timing jitter of the heterodyne interference signal caused by the ADC is the main noise affecting the phase measurement performance and must be suppressed. This paper proposes a sampling timing jitter noise suppression system (STJNSS), which can set system parameters for high-frequency signals used for inter-satellite clock noise transmission, the system clock of the phasemeter, and the pilot frequency for suppressing ADC sampling timing jitter noise, meeting the needs of the current major space gravitational wave detection plans. The experimental results after the integration of SJNSS and the phase meter show that the phase measurement noise of the heterodyne interferometer signal reaches 2π μrad/Hz1/2@(0.1 mHz–1 Hz), which meets the requirements of space gravitational wave missions. Full article
(This article belongs to the Special Issue Deep Ultraviolet Detection Materials and Devices)
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 389
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

27 pages, 8690 KiB  
Article
Automatic Number Plate Detection and Recognition System for Small-Sized Number Plates of Category L-Vehicles for Remote Emission Sensing Applications
by Hafiz Hashim Imtiaz, Paul Schaffer, Paul Hesse, Martin Kupper and Alexander Bergmann
Sensors 2025, 25(11), 3499; https://doi.org/10.3390/s25113499 - 31 May 2025
Viewed by 706
Abstract
Road traffic emissions are still a significant contributor to air pollution, which causes adverse health effects. Remote emission sensing (RES) is a state-of-the-art technique that continuously monitors the emissions of thousands of vehicles in traffic. Automatic number plate recognition (ANPR) systems are an [...] Read more.
Road traffic emissions are still a significant contributor to air pollution, which causes adverse health effects. Remote emission sensing (RES) is a state-of-the-art technique that continuously monitors the emissions of thousands of vehicles in traffic. Automatic number plate recognition (ANPR) systems are an essential part of RES systems to identify the registered owners of high-emitting vehicles. Recognizing number plates on L-vehicles (two-wheelers) with a standard ANPR system is challenging due to differences in size and placement across various categories. No ANPR system is designed explicitly for Category L vehicles, especially mopeds. In this work, we present an automatic number plate detection and recognition system for Category L vehicles (L-ANPR) specially developed to recognize L-vehicle number plates of various sizes and colors from different categories and countries. The cost-effective and energy efficient L-ANPR system was implemented on roads during remote emission measurement campaigns in multiple European cities and tested with hundreds of vehicles. The L-ANPR system recognizes Category L vehicles by calculating the size of each passing vehicle using photoelectric sensors. It can then trigger the L-ANPR detection system, which begins detecting license plates and recognizing license plate numbers with the L-ANPR recognizing system. The L-ANPR system’s license plate detection model is trained using thousands of images of license plates from various types of Category L vehicles across different countries, and the overall detection accuracy with test images exceeded 90%. The L-ANPR system’s character recognition is designed to identify large characters on standard number plates as well as smaller characters in various colors on small, moped license plates, achieving a recognition accuracy surpassing 70%. The reasons for false recognitions are identified and the solutions are discussed in detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 3214 KiB  
Article
Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution
by Ibrahim M. Sharaf, Mohamed S. I. Koubisy, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi and Abdelaziz Mohamed Aboraia
Catalysts 2025, 15(6), 519; https://doi.org/10.3390/catal15060519 - 24 May 2025
Viewed by 687
Abstract
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi [...] Read more.
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi2O3 nanoparticles through magnesium (Mg) doping, achieving remarkable enhancements in the photocatalytic degradation of organic pollutants and hydrogen evolution. The structural analysis through XRD, SEM, and EDX confirmed Mg-doping concentrations of 0.025 to 0.1 M led to crystallite size reduction from 79 nm to 13 nm, while the UV–Vis bandgap measurement showed it decreased from 3.8 eV to 3.08–3.3 eV. The photodegradation efficiency increased through Mg doping at a 0.1 M concentration, with the highest rate constant value of 0.0217 min−1. The doping process led to VB potential reduction between 3.37 V (pristine) and 2.78–2.91 V across the doped samples when referenced to SCE. The photocatalytic performance of Mg0.075Bi1.925O3 improved with its 3.2 V VB potential because the photoelectric band arrangement enhanced both light absorption and charge separation. The combination of modifications through Mg doping yielded an enhanced photocatalytic performance, which proves that magnesium doping is a pivotal approach to modifying β-Bi2O3 suitable for environmentally and energy-related applications. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

25 pages, 8071 KiB  
Article
The Interface Interaction of C3N4/Bi2S3 Promoted the Separation of Excitons and the Extraction of Free Photogenerated Carriers in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(4), 122; https://doi.org/10.3390/inorganics13040122 - 12 Apr 2025
Cited by 1 | Viewed by 580
Abstract
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N [...] Read more.
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N4) nanosheets, a C3N4/bismuth sulfide (Bi2S3) nanocomposite was synthesized. The photoelectric properties of the 405, 532, 650, 780, 808, 980 and 1064 nm light sources were studied using Au electrodes and graphite electrodes with 4B and 5B pencil drawings. The results indicate that the C3N4/Bi2S3 nanocomposite exhibited photocurrent switching behavior in the broadband light spectrum range. It is noted that even with zero bias applied, a good photoelectric signal was still measured. The resulting nanocomposite exhibited good photophysical stability. Physical mechanisms are discussed herein. It is suggested that the interfacial interaction of C3N4 and Bi2S3 in the nanocomposite creates a strong built-in electric field, which accelerates the separation of excitons. Therefore, as a dynamic process of photoexcitation, fluorescence, the photoelectric effect, and scattering are three main competing processes; the separation of excitons and the extraction of free photogenerated charge can be used as a reference for the fluorescent materials or other photoelectric materials studies as photophysical properties. This study also serves as an important reference for the design, defect and grain boundary modulation or interdisciplinary application of functional nanocomposites, especially for the bandgap modulation and suppression of photogenerated carrier recombination. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 1172 KiB  
Article
A Vibration Signal Detection System Based on Double Intensity Modulation
by Ju Wang, Kerui He, Jinlong Yu, Hao Luo, Qi Shao and Chuang Ma
Photonics 2025, 12(4), 364; https://doi.org/10.3390/photonics12040364 - 10 Apr 2025
Cited by 3 | Viewed by 375
Abstract
The measurement system proposed in this paper, based on double intensity modulation, can achieve the detection and recovery of vibration signals. The system uses a Mach–Zehnder modulator to modulate the intensity of the laser light before and after it is reflected from the [...] Read more.
The measurement system proposed in this paper, based on double intensity modulation, can achieve the detection and recovery of vibration signals. The system uses a Mach–Zehnder modulator to modulate the intensity of the laser light before and after it is reflected from the target, and the modulated optical signal carries the vibration signal information. After photoelectric conversion and data processing, the system measures and recovers the amplitude and frequency of the vibration signal. For sinusoidal signals, amplitudes of 15μm, 25μm and 40μm and frequencies of 100 Hz, 500 Hz and 1000 Hz were measured, and the experimental results demonstrate that the rapid measurement and waveform recovery of such signals can be achieved using our proposed system. Specifically, the absolute deviation in amplitude measurement is less than 0.13μm, and the relative error does not exceed 0.35%; the absolute deviation in frequency measurement is less than 0.35 Hz, with a relative error below 0.01%; and a refresh rate of up to 4 kHz can be reached. Moreover, an aluminum plate is selected as the target object instead of the reflector in the system, providing a new method for vibration signal detection and expanding the scope of dynamic detection in industrial applications. Full article
Show Figures

Figure 1

36 pages, 18532 KiB  
Article
A Heavy Metal Ion Water Quality Detection Model Based on Spectral Analysis: New Methods for Enhancing Detection Speed and Visible Spectral Denoising
by Bingyang Sun, Shunsheng Yang and Xu Cheng
Sensors 2025, 25(7), 2318; https://doi.org/10.3390/s25072318 - 5 Apr 2025
Viewed by 510
Abstract
This paper analyzes the current state of water quality detection equipment and, based on the demand for portable water quality detection systems that are on-site, rapid, accurate, cost-effective, and capable of multi-parameter measurements using spectral analysis, represents the future development direction of water [...] Read more.
This paper analyzes the current state of water quality detection equipment and, based on the demand for portable water quality detection systems that are on-site, rapid, accurate, cost-effective, and capable of multi-parameter measurements using spectral analysis, represents the future development direction of water quality detection. By focusing on indicators of heavy metal ion water pollution, this study aims to achieve the “rapid and accurate detection of water quality using spectral analysis” and emphasizes key technologies such as “visible absorption spectroscopy in photoelectric detection technology and spectral analysis”, “spectral denoising methods”, and “Convolutional Neural Network (CNN) modeling and deployment”. A novel combined denoising method integrating Ensemble Empirical Mode Decomposition (EEMD) and Singular Value Decomposition (SVD) is developed and applied for the first time in spectral water quality detection to improve accuracy. The system uses a ZYNQ-based spectral analysis platform to detect heavy metal ion concentrations, enhancing detection speed. Comparative tests with copper ion standard solutions against Chinese national standards show good accuracy and reproducibility. The developed EEMD-SVD method demonstrates superior denoising effectiveness in processing actual spectral data within the water quality detection system. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

11 pages, 1458 KiB  
Article
Evaluation of Measurement Uncertainty for the Wave Buoy Calibration Device Using a Vertical Lifting Method
by Yafei Huang, Donglei Zhao, Chenhao Gao, Tian Yan and Lijun He
J. Mar. Sci. Eng. 2025, 13(3), 605; https://doi.org/10.3390/jmse13030605 - 19 Mar 2025
Viewed by 380
Abstract
This study evaluates the measurement uncertainty of the wave buoy calibration device using a vertical lifting method to ensure the accuracy and reliability of wave buoy measurements for marine research. The calibration device employs a linear motor-driven vertical displacement system, integrating a standard [...] Read more.
This study evaluates the measurement uncertainty of the wave buoy calibration device using a vertical lifting method to ensure the accuracy and reliability of wave buoy measurements for marine research. The calibration device employs a linear motor-driven vertical displacement system, integrating a standard steel tape for wave height measurement and a photoelectric switch-based time calibration module for wave period verification. To address the limitations of traditional instruments, the device utilizes a 0.1 mm laser beam and image processing software to enhance the resolution of the standard steel tape, reducing the smallest division measurement from 1 mm to 0.1 mm. Additionally, a high-precision time calibration method synchronizes the time of the motor’s upper computer software and a frequency meter, minimizing indication error. Key uncertainty sources, including repeatability, environmental temperature effects, and the smallest division measure of instrument, were systematically analyzed. Results demonstrate that the extended measurement uncertainty (k = 2) for wave heights of 0.03 m and 40 m are 0.058 mm and 1.088 mm, respectively, while the uncertainty for a 30 s wave period is 3 ms. These values meet the stringent accuracy requirements (0.5% of measured values) for calibrating advanced wave buoys like the Directional Waverider 4. The proposed device provides a robust solution for validating wave buoy performance, offering significant practical value for oceanographic studies and coastal engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Characterization of Different Types of Micro-Fission and Micro-Ionization Chambers Under X-Ray Beams
by Juan Antonio Moreno-Pérez, Álvaro Marchena, Pablo Araya, Jesús J. López-Peñalver, Juan Alejandro de la Torre, Antonio M. Lallena, Santiago Becerril, Marta Anguiano, Alberto J. Palma and Miguel A. Carvajal
Sensors 2025, 25(6), 1862; https://doi.org/10.3390/s25061862 - 17 Mar 2025
Viewed by 549
Abstract
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in [...] Read more.
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in the X-ray spectrum. Irradiations were performed at the Biomedical Research Center of the University of Granada (CIBM) with a bipolar metal-ceramic X-ray tube operating at a voltage of 150 kV and a dose rate ranging from 0.05 to 2.28 Gy/min. All detectors under study featured identical external structures but varied in detection volume, anode configuration, and filling gas composition. To assess inter- and intra-model response variations, the tested models included 12 micro-ionization chambers (CRGR10/C5B/UG2), 3 micro-fission chambers (CFUR43/C5B-U5/UG2), 8 micro-fission chambers (CFUR43/C5B-U8/UG2), and 3 micro-fission chambers (CFUR44/C5B-U8/UG2), all manufactured by Photonis (Merignac, France). The experimental setup was considered suitable for the tests, as the leakage current was below 20 pA. The optimal operating voltage range was determined to be 130–150 V, and the photon sensitivities for the chambers were measured as 29.8 ± 0.3 pA/(Gy/h), 43.0 ± 0.8 pA/(Gy/h), 39.2 ± 0.3 pA/(Gy/h), and 96.0 ± 0.9 pA/(Gy/h), respectively. Monte Carlo numerical simulations revealed that the U layer in the fission chambers was primarily responsible for their higher sensitivities due to photoelectric photon absorption. Additionally, the simulations explained the observed differences in sensitivity based on the filling gas pressure. The detectors demonstrated linear responses to dose rates and high reproducibility, making them reliable tools for accurate determination of ionizing photon beams across a range of applications. Full article
(This article belongs to the Special Issue Detectors & Sensors in Nuclear Physics and Nuclear Astrophysics)
Show Figures

Figure 1

Back to TopTop