Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Mesoporous TiO2 Thin Films
2.2. Preparation of CsPbBr3 Perovskite Nanocrystals
2.3. Femtosecond Transient Absorption Spectroscopy
2.4. X-Ray Diffraction (XRD) Measurements
2.5. Steady-State Spectrometer
3. Results and Discussion
3.1. Optical Properties of CsPbBr3
3.2. Transient Absorption Spectra of Titanium Dioxide Assembled with Perovskite of Different Sizes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710. [Google Scholar] [CrossRef]
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef]
- Wieliczka, B.M.; Márquez, J.A.; Bothwell, A.M.; Zhao, Q.; Moot, T.; VanSant, K.T.; Ferguson, A.J.; Unold, T.; Kuciauskas, D.; Luther, J.M. Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics. ACS Nano 2021, 15, 19334. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745. [Google Scholar] [CrossRef]
- Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65. [Google Scholar] [CrossRef]
- Zhao, Q.; Hazarika, A.; Schelhas, L.T.; Liu, J.; Gaulding, E.A.; Li, G.; Zhang, M.; Toney, M.F.; Sercel, P.C.; Luther, J.M. Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Lett. 2020, 5, 238–247. [Google Scholar] [CrossRef]
- Di Stasio, F.; Christodoulou, S.; Huo, N.; Konstantatos, G. Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chem. Mater. 2017, 29, 7663–7667. [Google Scholar] [CrossRef]
- Dutta, A.; Behera, R.K.; Pal, P.; Baitalik, S.; Pradhan, N. Near-Unity Photoluminescence Quantum Efficiency for All CsPbX3 (X = Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach. Angew. Chem. Int. Ed. 2019, 58, 5552–5556. [Google Scholar] [CrossRef]
- Koscher, B.A.; Swabeck, J.K.; Bronstein, N.D.; Alivisatos, A.P. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569. [Google Scholar] [CrossRef]
- Nenon, D.P.; Pressler, K.; Kang, J.; Koscher, B.A.; Olshansky, J.H.; Osowiecki, W.T.; Koc, M.A.; Wang, L.W.; Alivisatos, A.P. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 2018, 140, 17760–17772. [Google Scholar] [CrossRef]
- Pan, J.; Shang, Y.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A.M.; Hedhili, M.N.; Emwas, A.H.; et al. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Yuan, J.; Zhang, X.; Qian, Y.; Zakeeruddin, S.M.; Larson, B.W.; Zhao, Q.; Shi, J.; Yang, J.; Ji, K.; et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 2020, 32, 2001906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, G.; Shi, Y.; Wang, Y.; Wang, J.; Du, L.; Ding, D. Ultrafast interfacial charge transfer of cesium lead halide perovskite films CsPbX3 (X = Cl Br I) with different halogen mixing. J. Phys. Chem. C 2018, 122, 27148–27155. [Google Scholar] [CrossRef]
- Mondal, N.; Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 2017, 9, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; He, B.; Dou, D.; Liu, Y.; Duan, J.; Zhao, Y.; Chen, H.; Tang, Q. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chem. Eng. J. 2019, 375, 121930. [Google Scholar] [CrossRef]
- Soetan, N.; Puretzky, A.; Reid, K.; Boulesbaa, A.; Zarick, H.F.; Hun, A.; Rose, O.; Rosenthal, S.; Geohegan, D.B.; Bardhan, R. Ultrafast Spectral Dynamics of CsPb(BrxCl1–x)3 Mixed-Halide Nanocrystals. ACS Photonics 2018, 5, 3575–3583. [Google Scholar] [CrossRef]
- Wang, C.; Rong, Y.; Wang, T. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites. Front. Optoelectron. 2023, 16, 25. [Google Scholar] [CrossRef]
- Lv, J.; Liu, A.; Shi, D.; Li, M.; Liu, X.; Wan, Y. Hot carrier trapping and its influence to the carrier diffusion in CsPbBr3 perovskite film revealed by transient absorption microscopy. Adv. Sci. 2024, 11, 2403507. [Google Scholar] [CrossRef]
- Du, L.; An, J.; Katayama, T.; Duan, M.; Shi, X.; Wang, Y.; Furube, A. Photogenerated carrier dynamics of Mn2+ doped CsPbBr3 assembled with TiO2 systems: Effect of Mn doping content. J. Chem. Phys. 2024, 160, 16. [Google Scholar] [CrossRef]
- Du, L.; Shi, X.; Duan, M.; Shi, Y. Pressure-induced tunable charge carrier dynamics in Mn-doped CsPbBr3 perovskite. Materials 2022, 15, 6984. [Google Scholar] [CrossRef]
- Du, L.; Shi, X.; Zhang, G.; Furube, A. Plasmon-induced charge transfer mechanism in gold-TiO2 nanoparticle systems: The size effect of gold nanoparticle. J. Appl. Phys. 2020, 128, 213104. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J.; Alivisatos, A.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D.V.; Kagan, C.R.; Klimov, V.I.; Rogach, A.L.; Reiss, P.; Milliron, D.J.; et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Kishore, G.; Samanta, A. Photoluminescence blinking of quantum confined CsPbBr3 perovskite nanocrystals: Influence of size. J. Phys. Chem. C 2023, 127, 10207–10214. [Google Scholar] [CrossRef]
- Tabassum, N.; Georgieva, Z.N.; Debnath, G.H.; Waldeck, D.H. Size-dependent chiro-optical properties of CsPbBr3 nanoparticles. Nanoscale 2023, 15, 2143–2151. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yamamoto, S. Size-dependent chiro-optical properties of CsPbBr3 nanoparticles. J. Appl. Phys. 2024, 135, 083107. [Google Scholar] [CrossRef]
- Sławek, A.; Starowicz, Z.; Lipiński, M. The influence of the thickness of compact TiO2 electron transport layer on the performance of planar CH3NH3PbI3 perovskite solar cells. Materials 2021, 14, 3295. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Peng, L.; Dutta, S.K.; Mondal, D.; Hudait, B.; Shyamal, S.; Xie, R.; Mahadevan, P.; Pradhan, N. Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 16160–16168. [Google Scholar] [CrossRef]
- Shinde, A.; Gahlaut, R.; Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 2017, 121, 14872–14878. [Google Scholar] [CrossRef]
- Esparza, D.; Sidhik, S.; López-Luke, T.; Rivas, J.M.; De la Rosa, E. Light-induced effects on crystal size and photo-stability of colloidal CsPbBr3 perovskite nanocrystals. Mater. Res. Express 2019, 6, 045041. [Google Scholar] [CrossRef]
- Dutta, A.; Dutta, S.K.; Das Adhikari, S.; Pradhan, N. Tuning the size of CsPbBr3 nanocrystals: All at one constant temperature. ACS Energy Lett. 2018, 3, 329–334. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Stamplecoskie, K.G.; Manser, J.S.; Kamat, P.V. Dual nature of the excited state in organic-inorganic lead halide perovskites. Science 2015, 8, 208–215. [Google Scholar] [CrossRef]
- Manser, J.S.; Kamat, P.V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743. [Google Scholar] [CrossRef]
- Brennan, M.C.; Herr, J.E.; Nguyen-Beck, T.S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201–12208. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Sui, N.; Wang, Y.; Chi, X.; Wang, Q.; Chen, Y.; Ji, W.; Zou, L.; Zhang, H. Exciton relaxation dynamics in photo-excited CsPbI3 perovskite nanocrystals. Sci. Rep. 2016, 6, 29442. [Google Scholar] [CrossRef]
- Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J.K.; Prasad, S.K.K.; Metin, D.Z.; Laufersky, G.; Gaston, N.; Halpert, J.E. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 2017, 29, 3644–3652. [Google Scholar] [CrossRef]
- Yang, J.N.; Chen, T.; Ge, J.; Wang, J.J.; Yin, Y.C.; Lan, Y.F.; Ru, X.C.; Ma, Z.Y.; Zhang, Q.; Yao, H.B. High color purity and efficient green light-emitting diode using perovskite nanocrystals with the size overly exceeding bohr exciton diameter. J. Am. Chem. Soc. 2021, 143, 19928–19937. [Google Scholar] [CrossRef]
- Zhao, T.; Li, D.; Zhang, Y.; Chen, G. Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. J. Colloid Interface Sci. 2022, 628, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mu, Y.; Li, X.; Feng, Y.; Zhang, M.; Lu, T. Constructing strong built-in electric field in lead-free halide-perovskite-based heterojunction to boost charge separation for efficient CO2 photoreduction. Appl. Catal. B Environ. Energy 2025, 366, 125012. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, Y.; Yang, M.; Snaider, J.; Zhu, K.; Huang, L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Das, S.; Samanta, A. Hot hole transfer dynamics from CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 2020, 5, 2246–2252. [Google Scholar] [CrossRef]
- Wu, K.; Liang, G.; Shang, Q.; Ren, Y.; Kong, D.; Lian, T. Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. J. Am. Chem. Soc. 2015, 137, 12792–12795. [Google Scholar] [CrossRef]
- Li, M.; Bhaumik, S.; Goh, T.W.; Kumar, M.S.; Yantara, N.; Grätzel, M.; Mhaisalkar, S.; Mathews, N.; Sum, T.C. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 2017, 8, 14350. [Google Scholar] [CrossRef]
- Li, M.; Fu, J.; Xu, Q.; Sum, T.C. Slow hot-carrier cooling in halide perovskites: Prospects for hot-carrier solar cells. Adv. Mater. 2019, 31, 1802486. [Google Scholar] [CrossRef]
- Bozyigit, D.; Yazdani, N.; Yarema, M.; Yarema, O.; Lin, W.M.M.; Volk, S.; Vuttivorakulchai, K.; Luisier, M.; Juranyi, F.; Wood, V. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 2016, 531, 618–622. [Google Scholar] [CrossRef]
- Yu, B.; Chen, L.; Qu, Z.; Zhang, C.; Qin, Z.; Wang, X.; Xiao, M. Size-dependent hot carrier dynamics in perovskite nanocrystals revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2021, 12, 238–244. [Google Scholar] [CrossRef]
- Catone, D.; Ammirati, G.; O’keeffe, P.; Martelli, F.; Di Mario, L.; Turchini, S.; Paladini, A.; Toschi, F.; Agresti, A.; Pescetelli, S.; et al. Effects of crystal morphology on the hot-carrier dynamics in mixed-cation hybrid lead halide perovskites. Energies 2021, 14, 708. [Google Scholar] [CrossRef]
- Gomez, C.M.; Pan, S.; Braga, H.M.; Oliveira, L.S.D.; Dalpian, G.M.; Biesold-McGee, G.V.; Lin, Z.; Santos, S.F.; Souza, J.A. Possible charge-transfer-induced conductivity enhancement in TiO2 microtubes decorated with perovskite CsPbBr3 nanocrystals. Langmuir 2020, 36, 5408–5416. [Google Scholar] [CrossRef]
- Begum, R.; Parida, M.R.; Abdelhady, A.L.; Murali, B.; Alyami, N.M.; Ahmed, G.H.; Hedhili, M.N.; Bakr, O.M.; Mohammed, O.F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Kong, X.; Wang, W.; Juan, F.; Wang, M.; Wei, H.; Li, J.; Cao, B. Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots. J. Alloys Compd. 2020, 831, 154834. [Google Scholar] [CrossRef]
- Freeman, G. Kinetics of Nonhomogeneous Processes; John Wiley & Sons: Chichester, UK, 1987; pp. 575–650. [Google Scholar]
- Du, L.; Furube, A.; Yamamoto, K.; Hara, K.; Katoh, R.; Tachiya, M. Plasmon-induced charge separation recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size. J. Phys. Chem. C 2009, 113, 6454–6462. [Google Scholar] [CrossRef]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2 and TiO2 films used in dye-sensitized solar cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef]
- Brandt, R.E.; Poindexter, J.R.; Gorai, P.; Kurchin, R.C.; Hoye, R.L.; Nienhaus, L.; Wilson, M.W.; Polizzotti, J.A.; Sereika, R.; Zaltauskas, R. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem. Mater. 2017, 29, 4667–4674. [Google Scholar] [CrossRef]
- Ye, J.; Byranvand, M.M.; Martínez, C.O.; Hoye, R.L.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem. 2021, 133, 21804–21828. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef]
- Zhu, E.; Zhao, Y.; Dai, Y.; Wang, Q.; Dong, Y.; Chen, Q.; Li, Y. Heterojunction-Type Photocatalytic System Based on Inorganic Halide Perovskite CsPbBr3. Chin. J. Chem. 2020, 38, 1718–1722. [Google Scholar] [CrossRef]
- An, J.; Chen, G.; Zhu, X.; Lv, X.; Bao, J.; Xu, X. Ambipolar Photoresponse of CsPbX3-ZnO (X = Cl, Br, and I) Heterojunctions. ACS Appl. Electron. Mater. 2022, 4, 1525–1532. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, Y.; Liu, C.; Wang, J.; Ruan, J.; Zhao, X.; Han, J. Two-Step Anti-Stokes Photoluminescence of CsPbX3 Nanocrystals. Adv. Opt. Mater. 2021, 9, 2001885. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, Y.; Liu, C.; Zhao, Z.; Wang, J.; Han, J.; Zhao, X. Revealing the Effects of Defects on Ultrafast Carrier Dynamics of CsPbI3 Nanocrystals in Glass. J. Phys. Chem. C 2019, 123, 15851–15858. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Q.; Fang, W.H.; Long, R. Interfacial engineering determines band alignment and steers charge separation and recombination at an inorganic perovskite quantum dot/WS2 junction: A time domain ab initio study. J. Phys. Chem. Lett. 2019, 10, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T.C.; Lam, Y.M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407. [Google Scholar] [CrossRef]
- Forde, A.; Inerbaev, T.; Hobbie, E.K.; Kilin, D.S. Excited-state dynamics of a CsPbBr3 nanocrystal terminated with binary ligands: Sparse density of states with giant spin-orbit coupling suppresses carrier cooling. J. Am. Chem. Soc. 2019, 141, 4388–4397. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, H.; Zhu, L.; Zhang, X.; Jiang, L.; Chen, W.; Liu, G.; Pan, X.; Dai, S. High-temperature shaping perovskite film crystallization for solar cell fast preparation. Sol. Energy Mater. Sol. Cells 2017, 160, 60–66. [Google Scholar] [CrossRef]
Size (nm) | τ1 (fs) | τ2 (ps) | τ3 (ns) |
---|---|---|---|
6.20 | 536.1 ± 46 | 84.57 ± 2.4 | 1.137 ± 0.059 |
7.69 | 505.3 ± 28 | 92.34 ± 3.2 | 1.450 ± 0.100 |
8.61 | 447.6 ± 26 | 93.85 ± 3.3 | 1.359 ± 0.096 |
9.38 | 442.6 ± 25 | 94.52 ± 2.9 | 1.517 ± 0.079 |
10.25 | 440.2 ± 24 | 99.99 ± 2.9 | 1.524 ± 0.099 |
10.68 | 402.4 ± 21 | 112.1 ± 3.0 | 1.593 ± 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Duan, M.; An, J.; Wang, Y.; Du, L. Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3. Nanomaterials 2025, 15, 1065. https://doi.org/10.3390/nano15141065
Lv Y, Duan M, An J, Wang Y, Du L. Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3. Nanomaterials. 2025; 15(14):1065. https://doi.org/10.3390/nano15141065
Chicago/Turabian StyleLv, Ying, Menghan Duan, Jie An, Yunpeng Wang, and Luchao Du. 2025. "Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3" Nanomaterials 15, no. 14: 1065. https://doi.org/10.3390/nano15141065
APA StyleLv, Y., Duan, M., An, J., Wang, Y., & Du, L. (2025). Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3. Nanomaterials, 15(14), 1065. https://doi.org/10.3390/nano15141065