Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = photocatalytic materials 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7386 KiB  
Article
Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light
by Jesús Herrera-Ramos, Socorro Oros-Ruíz, Angela G. Romero-Villegas, J. Edgar Carrera-Crespo, Raúl Pérez-Hernández, Jaime S. Valente and Francisco Tzompantzi
Catalysts 2025, 15(8), 699; https://doi.org/10.3390/catal15080699 - 22 Jul 2025
Viewed by 442
Abstract
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis [...] Read more.
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis spectroscopy showed that the bandgap of the CdS/TiO2 heterostructured nanocomposites decreases compared to the raw TiO2 support, making them very appropriate for photocatalytic applications in the visible region. The photocatalysts were tested for hydrogen production in methanol–water solutions under visible light conditions. It was observed that the TiC20 photocatalyst prepared by the impregnation method improved the photocatalytic activity compared with photodeposition technique (TiC20FD), achieving a maximum hydrogen production of 570.5 µmol H2 gcat1 h−1, while the latter attained 383.4 µmol H2 gcat1 h−1. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

22 pages, 8995 KiB  
Article
Evaluation of the Adsorption Capacity of the BiOX (X = Cl, I) and BiOX-GO Nanomaterials (NMs) for Water Treatment
by Jorge H. Martinez-Montelongo, Martha L. Jiménez-González, Abner González-Pérez, Monika Mortimer, F. J. Avelar-González, Jorge E. Macias-Díaz and Iliana E. Medina-Ramírez
Processes 2025, 13(7), 2179; https://doi.org/10.3390/pr13072179 - 8 Jul 2025
Viewed by 386
Abstract
Water pollution is a global problem that severely impacts human and environmental health, water recycling, and the economy. In Mexico, due to water scarcity, potable water contains significant amounts of heavy metals (i.e., arsenic (As)); thus, there is a need for efficient and [...] Read more.
Water pollution is a global problem that severely impacts human and environmental health, water recycling, and the economy. In Mexico, due to water scarcity, potable water contains significant amounts of heavy metals (i.e., arsenic (As)); thus, there is a need for efficient and sustainable water treatment strategies. Bismuth oxyhalides, BiOX (X = Cl, Br, I), exhibit three-dimensional (3D) porous structures suitable for efficient adsorption activity. In addition, bismuth is an abundant and biocompatible element appropriate for fabricating sustainable environmental remediation technologies, such as adsorptive BiOX nanomaterials (NMs). In this study, we examine the adsorption capacity of BiOX (X = Cl, I), BiOX-GO (GO: graphene oxide) and GO NMs to remove methylene blue (MB), methyl orange (MO) and arsenite (AsO33−) from aqueous solution. BiOCl-GO 10%, BiOI, BiOI-GO 1%, BiOI-GO 10% and GO have an enhanced adsorption capacity, removing MB (20 ppm) within one hour using a low dose of NMs (1 mg/mL). In addition, BiOX-GO NMs can be easily separated from the solution and regenerated upon visible light activation due to the photocatalytic activity of the materials. The efficiency of the NMs under study for MO removal decreases, with the GO material having the highest efficiency (96%), followed by BiOX-GO 10% (78%). BiOCl-GO 1% removes arsenic from aqueous solution at low doses and short treatment times; 5 mg As/g adsorbent takes five hours; however, at longer adsorption times (24 h), BiOI-GO 1% excels in its arsenic removal capacity. Perlite-supported BiOCl NMs exhibit a weak capacity for water treatment due to the poor mechanical strength of perlite and the amount of surface-exposed BiOCl material. For the photocatalytic removal of arsenic (oxidation–adsorption), BiOI-GO 1% excels in arsenic removal with efficiencies > 70%. Full article
(This article belongs to the Special Issue Sustainable Adsorbent Materials for Wastewater Treatment)
Show Figures

Figure 1

20 pages, 3869 KiB  
Article
Dual-Mode Integration of a Composite Nanoparticle in PES Membranes: Enhanced Performance and Photocatalytic Potential
by Rund Abu-Zurayk, Nour Alnairat, Haneen Waleed, Aya Khalaf, Duaa Abu-Dalo, Ayat Bozeya and Razan Afaneh
Nanomaterials 2025, 15(14), 1055; https://doi.org/10.3390/nano15141055 - 8 Jul 2025
Viewed by 405
Abstract
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity [...] Read more.
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity and photocatalytic potential as a photocatalytic membrane. The nanoparticles were synthesized using the sol–gel auto-combustion method and incorporated into PES membranes through mixed-matrix embedding (1 wt% and 3 wt%) and surface coating. X-ray diffraction confirmed the cubic spinel structure of the composite nanoparticles, which followed the second order kinetic reaction during the photodegradation–adsorption of crystal violet. The mixed-matrix membranes displayed a remarkable 170% increase in water flux and a 25% improvement in mechanical strength, accompanied by a slight decrease in contact angle at 1 wt% of nanoparticle loading. In contrast, the surface-coated membranes demonstrated a significant reduction in contact angle to 18°, indicating a highly hydrophilic surface and increased roughness. All membranes achieved high dye removal rates of 98–99%, but only the coated membrane system exhibited approximately 50% photocatalytic degradation, following mixed kinetics. These results highlight the critical importance of surface modification in advancing PES membranes, as it significantly reduces fouling and enhances water–material interaction qualities essential for future filtration and photocatalytic applications. Exploring hybrid strategies that combine both embedding and coating approaches may yield even greater synergies in membrane functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

18 pages, 3862 KiB  
Article
Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye
by Sarra Hamouda, Nourredine Bettahar, Miloud Aissat, Mika Sillanpää, Saleh AL-Farraj and Abdellah Bahmani
Catalysts 2025, 15(7), 616; https://doi.org/10.3390/catal15070616 - 22 Jun 2025
Viewed by 559
Abstract
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy [...] Read more.
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy (SEM). The photocatalytic degradation of Trypan Blue (TB) and Naphthol Green B (NGB) dyes from aqueous solutions under UV irradiation was investigated. The effects of contact time, photocatalyst dose, dye concentration, solution pH, scavenger effect, and regeneration of catalyst were investigated. The kinetic study showed that the equilibrium was reached within 30 min and 40 min for TB and NGB dyes, respectively, with photodegradation efficiency of around 91% and 83% for TB and NGB dyes, respectively, for dye concentration of 25 mg∙L−1, and the pseudo-first order showed good agreement with the reaction. The optimum photocatalyst dose is 20 mg (1 g∙L−1) and 30 mg (1.5 g∙L−1) for TB and NGB dyes, respectively, and the optimal pH of reaction was found to be 7 for both TB and NGB dyes. This study was established to highlight the photodegradation performance of the prepared catalyst Ti-Zn-CO3 for the degradation of (TB and NGB) dyes chosen as pollutants, and the fact that it can be used many times, which has an economical effect. This mean that the prepared sample is a potential catalyst with good photocatalytic activity, stability, and reusability. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

17 pages, 3918 KiB  
Article
One-Step Synthesis of Polymeric Carbon Nitride Films for Photoelectrochemical Applications
by Alberto Gasparotto, Davide Barreca, Chiara Maccato, Ermanno Pierobon and Gian Andrea Rizzi
Nanomaterials 2025, 15(13), 960; https://doi.org/10.3390/nano15130960 - 21 Jun 2025
Viewed by 464
Abstract
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical [...] Read more.
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical applications requires effective methods for the fabrication of PCN films endowed with suitable mechanical stability and modular chemico-physical properties. In this context, as a proof-of-concept, we report herein on a simple and versatile chemical vapor infiltration (CVI) strategy for one-step PCN growth on porous Ni foam substrates, starting from melamine as a precursor compound. Interestingly, tailoring the reaction temperature enabled to control the condensation degree of PCN films from melem/melon hybrids to melon-like materials, whereas the use of different precursor amounts directly affected the mass and morphology of the obtained deposits. Altogether, such features had a remarkable influence on PCN electrochemical performances towards the oxygen evolution reaction (OER), yielding, for the best performing systems, Tafel slopes as low as ≈65 mV/dec and photocurrent density values of ≈1 mA/cm2 at 1.6 V vs. the reversible hydrogen electrode (RHE). Full article
Show Figures

Graphical abstract

23 pages, 4622 KiB  
Article
A Rapid and Complete Photodegradation of Doxycycline Using rGO@CuO Nanocomposite Under Visible and Direct Sunlight: Mechanistic Insights and Real-Time Applicability
by Panchraj Verma, Subrata Das, Shubham Raj and Raphaël Schneider
Nanomaterials 2025, 15(13), 953; https://doi.org/10.3390/nano15130953 - 20 Jun 2025
Viewed by 483
Abstract
In this study, a simple and efficient hydrothermal strategy was developed to modify reduced graphene oxide (rGO) with copper (II) oxide (CuO) nanoparticles by varying the weight ratio of rGO relative to CuO (rGO@CuO1:1, rGO@CuO1:2, and rGO@CuO2:1). [...] Read more.
In this study, a simple and efficient hydrothermal strategy was developed to modify reduced graphene oxide (rGO) with copper (II) oxide (CuO) nanoparticles by varying the weight ratio of rGO relative to CuO (rGO@CuO1:1, rGO@CuO1:2, and rGO@CuO2:1). The obtained materials were further characterized using analytical tools. Photocatalytic performance was assessed using adsorption–photocatalysis experiments under a household LED light source (10 W, λ > 400 nm), and the degree of degradation of doxycycline (DOX) was evaluated using UV-Vis spectrophotometer. The highest efficiency of 100% was achieved with a DOX concentration of 70 ppm, rGO@CuO1:1 dosage of 1 mg/mL, and pH 7 within 30 min of irradiation. The degradation kinetics followed the pseudo-first-order model (R2 ~0.99) and the Langmuir adsorption isotherm, indicating that DOX on the surface is governed by a dynamic equilibrium between adsorption and degradation rates. Furthermore, efficacy was tested using real water samples, and the recyclability of the catalyst was evaluated in up to five cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

14 pages, 4970 KiB  
Article
Correlation of the Microstructural, Chemical, Luminescent, and Photocatalytic Properties of SrGd2O4 Doped with Rare Earth Ions
by Tijana Stamenković and Vesna Lojpur
Catalysts 2025, 15(6), 522; https://doi.org/10.3390/catal15060522 - 26 May 2025
Viewed by 540
Abstract
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting [...] Read more.
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting SrGd2O4 co-doped with varying quantities of Yb3+ ions (2, and 6 at%) and a constant quantity of Ho3+ ions (1 at%). Transmission electron microscopy (TEM) revealed the existence of porous agglomerated round-shaped particles, with the size around 150 nm, arranged in network-like structures. Energy dispersive X-ray spectroscopy (EDS) confirmed the presence of all structural elements and their homogeneous distribution throughout the particles. The presence of specific emission peaks associated with Dy3+ or Ho3+ dopant ions was demonstrated by luminescent measurement. The degradation processes of specific organic dyes (methylene blue for up-converters and rhodamine B for down-converters) under simulated sun irradiation were used to investigate photocatalytic activity. A reduction in dye concentration in aqueous solutions was measured using UV/Vis absorption spectroscopy. The results showed a successful dye breakdown rate after 4 h, and aliquots of the working solutions were obtained at precise intervals. Additionally, the results indicated that samples with the highest luminescence intensity exhibited superior photocatalytic activity, suggesting a significant promise for usage as multifunctional materials. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

17 pages, 3829 KiB  
Article
Innovative Dual-Functional Photocatalyst Design for Precision Water Remediation
by Yike Li and Xian Liu
Crystals 2025, 15(5), 483; https://doi.org/10.3390/cryst15050483 - 21 May 2025
Viewed by 463
Abstract
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material [...] Read more.
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material features an engineered surface architecture that combines selective molecular recognition sites with enhanced charge separation capabilities, specifically tailored for the targeted degradation of recalcitrant salicylic acid (SA) contaminants. Advanced characterization (XRD, EPR, FT-IR, TEM-EDS) reveals unprecedented structure–activity relationships, demonstrating how template molecule ratios (Ti:SA = 5:1) and calcination parameters (550 °C) collaboratively optimize both adsorption selectivity and quantum efficiency. The optimized MIP-Ag-TiO2 achieves breakthrough performance metrics: 98.6% SA degradation efficiency at 1% Ag doping, coupled with a record selectivity coefficient R = 7.128. Mechanistic studies employing radical trapping experiments identify a dual •OH/O2-mediated degradation pathway enabled by the Ag-TiO2 Schottky junction. This work establishes a paradigm-shifting “capture-and-destroy” photocatalytic system that simultaneously addresses the critical challenges of selectivity and quantum yield limitations in advanced oxidation processes, positioning molecularly imprinted plasmonic photocatalysts as next-generation smart materials for precision water purification. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

37 pages, 31186 KiB  
Review
Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment
by Yining Zhang, Huiqin Wang and Jisheng Zhang
Catalysts 2025, 15(4), 336; https://doi.org/10.3390/catal15040336 - 31 Mar 2025
Cited by 1 | Viewed by 1308
Abstract
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their [...] Read more.
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their broadband light absorption, ultrafast thermal carrier dynamics, tunable electronic structure, and low evaporation enthalpy characteristics. This review systematically investigates the enhancement mechanisms of graphene photothermal conversion on photocatalytic processes, including (1) improving light absorption through surface morphology modulation, defect engineering, and plasmonic material compositing; (2) reducing water evaporation enthalpy via hydrophilic functional group modification and porous structure design; (3) suppressing heat loss through thermal insulation layers and 3D structural optimization; and (4) enhancing water transport efficiency via fluid channel engineering and wettability control. Furthermore, salt resistance strategies and structural optimization significantly improve system practicality and stability. In water treatment applications, graphene-based SDIE systems achieve synergistic “adsorption–catalysis–evaporation” effects, enabling efficient the degradation of organic pollutants, reduction in/fixation of heavy metal ions, and microbial inactivation. However, practical implementation still faces challenges including low steam condensation efficiency, insufficient long-term material durability, and high scaling-up costs. Future research should prioritize enhancing heat and mass transfer in condensation systems, optimizing material environmental adaptability, and developing low-cost manufacturing processes to promote widespread application of graphene-based SDIE–photocatalysis integrated systems. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Figure 1

15 pages, 7554 KiB  
Article
TiO2/LaFeO3 Composites for the Efficient Degradation of Benzoic Acid and Hydrogen Production
by Isabella Natali Sora, Benedetta Bertolotti, Renato Pelosato, Andrea Lucotti, Matteo Tommasini and Marica Muscetta
Molecules 2025, 30(7), 1526; https://doi.org/10.3390/molecules30071526 - 29 Mar 2025
Cited by 1 | Viewed by 543
Abstract
LaFeO3/TiO2 composites were prepared in the range 0–12.2 wt% of LaFeO3, characterized, and tested for both benzoic acid (BA) and 4-methoxycinnamic acid (MCA) degradation in aqueous solution, and hydrogen evolution. The preparation method was via ball-milling without thermal [...] Read more.
LaFeO3/TiO2 composites were prepared in the range 0–12.2 wt% of LaFeO3, characterized, and tested for both benzoic acid (BA) and 4-methoxycinnamic acid (MCA) degradation in aqueous solution, and hydrogen evolution. The preparation method was via ball-milling without thermal treatment. The composite materials presented agglomerates of LaFeO3 with an average size from 1 to 5 μm, and the TiO2 powder was well dispersed onto the surface of each sample. They showed varying activities for BA degradation depending on composition and light wavelength. The 6.2 wt% and 12.2 wt%-LaFeO3/TiO2 composites exhibited the highest activity under 380–800 nm light and could degrade BA in 300 min at BA concentration 13.4 mg L−1 and catalyst 0.12 g L−1. Using a 450 nm LED light source, all composites degraded less than 10% of BA, but in the presence of H2O2 (1 mM) the photocatalytic activity was as high as 96% in <120 min, 6.2 wt%-LaFeO3/TiO2 composite being the most efficient sample. It was found that in the presence of H2O2, BA degradation followed first order kinetic with a reaction rate constant of 4.8 × 10−4 s−1. The hydrogen production rate followed a classical volcano-like behavior, with the highest reactivity (1600 μmol h−1g−1 at 60 °C) in the presence of 3.86%wt- LaFeO3/TiO2. It was also found that LaFeO3/TiO2 exhibited high stability in four recycled tests without losing activity for hydrogen production. Furthermore, a discussion on photogenerated charge-carrier transfer mechanism is briefly provided, focusing on lacking significant photocatalytic activity under 450 nm light, so p-n heterojunction formation is unlikely. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

16 pages, 10019 KiB  
Article
Bifunctional N-TiO2/C/PU Foam for Interfacial Water Evaporation and Sewage Purification
by Ke Wang, Weifeng Li and Yumei Long
Materials 2025, 18(7), 1550; https://doi.org/10.3390/ma18071550 - 29 Mar 2025
Viewed by 557
Abstract
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with [...] Read more.
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with a low bandgap (2.33 eV), excellent light absorption ability, and high photothermal conversion efficiency (48.2%). Black N-TiO2/C was prepared by the sol-gel method in the presence of hexamethylenetetramine as a source of nitrogen and carbon. The simultaneous N doping and C with superior photothermal effect rapidly increased the surface temperature of the material, reduced the recombination rate of electrons and holes, and improved the photocatalytic activity, showing great potential for solar thermal energy conversion. The prepared solar absorbent and polyurethane (PU) were mixed evenly to form a porous N-TiO2/C/PU (NTCP) foam for purifying water. The evaporator produced clean water at a rate of 1.73 kg m−2 h−1 under the simulated sunlight of 1 sun irradiation. Meanwhile, the evaporator simultaneously photodegraded methylene blue (MB) and rhodamine B (RhB) underwater at a removal rate > 90%. The bifunctional solar water evaporation device combining photocatalytic and photothermal effects holds great potential for water purification. Full article
Show Figures

Figure 1

18 pages, 4124 KiB  
Article
Polythiophene/Ti3C2TX MXene Composites for Effective Removal of Diverse Organic Dyes via Complementary Activity of Adsorption and Photodegradation
by Young-Hwan Bae, Seongin Hong and Jin-Seo Noh
Molecules 2025, 30(6), 1393; https://doi.org/10.3390/molecules30061393 - 20 Mar 2025
Viewed by 613
Abstract
This study presents an effective method to remove organic dyes from wastewater, using a composite of few-layered porous (FLP) Ti3C2Tx MXene and polythiophene (PTh) nanospheres. The FLP MXene, which was pre-synthesized by a series of intercalation, heat-induced TiO [...] Read more.
This study presents an effective method to remove organic dyes from wastewater, using a composite of few-layered porous (FLP) Ti3C2Tx MXene and polythiophene (PTh) nanospheres. The FLP MXene, which was pre-synthesized by a series of intercalation, heat-induced TiO2 formation, and its selective etching, was combined with PTh nanospheres via a simple solution method. The composite effectively removed various organic dyes, but its efficiency was altered depending on the type of dye. Particularly, the removal efficiency of methylene blue reached 91.3% and 97.8% after irradiation for 10 min and 1 h, respectively. The high dye removal efficiency was attributed to the large surface area (32.01 m2/g) of the composite, strong electrostatic interaction between the composite and dye molecules, and active photodegradation process. The strong electrostatic interaction and large surface area could facilitate the adsorption of dye molecules, while photocatalytic activity further enhance dye removal under light. These results are indicative that the PTh/FLP MXene composite may be a promising material for environmental remediation through synergistic processes of adsorption and photocatalysis. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

12 pages, 3046 KiB  
Article
First-Principles Exploration of the Electronic Structure and Optical Properties of S-Doped Bi4O5Br2
by Gaihui Liu, Huihui Shi, Nan Dong, Xinrui Cao, Xuan Gao, Suqin Xue and Fuchun Zhang
Catalysts 2025, 15(3), 228; https://doi.org/10.3390/catal15030228 - 27 Feb 2025
Viewed by 538
Abstract
At present, many research studies have explored the modification of Bi4O5Br2, but relatively few have focused on non-metallic doping. In particular, the effect of S doping on its photocatalytic mechanism remains unclear. Hence, this study systematically investigates [...] Read more.
At present, many research studies have explored the modification of Bi4O5Br2, but relatively few have focused on non-metallic doping. In particular, the effect of S doping on its photocatalytic mechanism remains unclear. Hence, this study systematically investigates the modulation mechanism of the electronic structure and optical properties of Bi4O5Br2 by doped S using density functional theory (DFT) calculations. The calculated results indicate that the Br4Br1 model, in which S replaces Br at sites 4 and 1, is the most thermodynamically stable configuration. Comparing the models before and after doping, it is found that S doping significantly alters the lattice parameters of Bi4O5Br2, thus affecting its electronic structure. Furthermore, differential charge density calculations reveal that S doping improves the charge transfer capability and enhances the separation efficiency of photogenerated electron–hole pairs in Bi4O5Br2. Calculated absorption spectra demonstrate that S doping augments the light absorption of Bi4O5Br2 in the low- and medium-energy regions. Moreover, the dielectric function calculations further validate the effect of S doping on the optical properties of Bi4O5Br2. Specifically, there is an increase in polarization and energy loss in the low-energy region, with the opposite trend in the middle- and high-energy regions. Overall, S doping elevated the light absorption capacity and charge transfer efficiency of Bi4O5Br2 by altering its lattice parameter and electronic structure, which facilitated the enhancement of photocatalytic performance. This study provides new insights into the development of efficient photocatalytic materials and broadens the potential of Bi4O5Br2 for photocatalytic applications. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Figure 1

16 pages, 11241 KiB  
Article
Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye
by Laura Cocheci, Aurelia Visa, Bianca Maranescu, Lavinia Lupa, Aniela Pop, Ecaterina Stela Dragan and Adriana Popa
Polymers 2025, 17(5), 641; https://doi.org/10.3390/polym17050641 - 27 Feb 2025
Viewed by 642
Abstract
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic [...] Read more.
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly. Full article
Show Figures

Figure 1

18 pages, 15024 KiB  
Article
Photocatalytically Induced Degradation of Nano-TiO2-Modified Paint Coatings Under Low-Radiation Conditions
by Maciej Kalinowski, Karol Chilmon, Justyna Kuziak, Paweł Łukowski and Wioletta Jackiewicz-Rek
Coatings 2025, 15(3), 281; https://doi.org/10.3390/coatings15030281 - 27 Feb 2025
Cited by 1 | Viewed by 1440
Abstract
Photocatalytic coatings incorporating nano-TiO2 have emerged as effective solutions for air purification, utilizing solar radiation to degrade airborne pollutants. However, the long-term stability of such coatings, particularly those based on organic binders, remains a concern due to their susceptibility to photocatalytic-driven degradation. [...] Read more.
Photocatalytic coatings incorporating nano-TiO2 have emerged as effective solutions for air purification, utilizing solar radiation to degrade airborne pollutants. However, the long-term stability of such coatings, particularly those based on organic binders, remains a concern due to their susceptibility to photocatalytic-driven degradation. This study investigates the effects of low-intensity UV-A irradiation (1–10 W/m2) on acrylic-based photocatalytic coatings’ structural integrity and air purification performance. The findings reveal that significant binder decomposition occurs even under low irradiation conditions—comparable to natural sunlight exposure in Northern and Central Europe during autumn and winter. The surface porosity increased from 2.28% to 9.09% due to polymer degradation, exposing more nano-TiO2 particles and enhancing NO removal efficiency from approximately 120 µg/hm2 to 360 µg/hm2 under UV-A irradiation (1 W/m2). However, this process also resulted in benzene emissions reaching approximately five ppb, raising concerns about secondary pollution and the potential release of nano-TiO2 due to polymer matrix disintegration. These findings highlight the need for optimized coating formulations that balance photocatalytic efficiency with long-term material stability, mitigating the environmental and health risks associated with secondary pollutant emissions. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

Back to TopTop