Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye
Abstract
1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. pH of the Point of Zero Charge pHpzc
3. Discussion
3.1. Photocatalytic Activity of the Synthesized Materials
3.1.1. Effect of Contact Time on Photodegradation
3.1.2. Effect of Catalyst Loading on Photodegradation
3.1.3. Effect of Dye Concentration
3.1.4. Effect of pH on Photocatalytic Degradation
3.1.5. Photocatalyst Stability Study
3.1.6. Effect of Different Scavengers in the Photocatalytic Degradation
3.1.7. Photocatalytic Degradation Mechanism of TB and NGB Dyes over the Photocatalyst
4. Materials and Methods
4.1. Materials
4.1.1. Chemicals
4.1.2. Standard Solutions
4.2. Catalyst Synthesis
4.3. Characterization
4.4. Photocatalytic Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TB | Trypan Blue |
NGB | Naphthol Green B |
XRD | X-Ray Diffraction |
FTIR | Fourier transform infrared spectroscopy |
TGA | Thermogravimetric analysis |
DTG | Derivative of the TGA |
DRS | Diffuse Reflection Spectroscopy |
EDTA | ethylenediaminetetraacetic acid |
PZC | Point of zero charge |
References
- Despotović, V.; Hadnađev-Kostić, M.; Vulić, T.; Bognár, S.; Karanović, Đ.; Tot, N.; Šojić Merkulov, D. Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants. Separation 2024, 11, 308. [Google Scholar] [CrossRef]
- Ahmad, B.; Imran, M. Emerging Organic Contaminants, Pharmaceuticals and Personal Care Products (PPCPs): A Threat to Water Quality. In Hazardous Environmental Micro-Pollutants, Health Impacts and Allied Treatment Technologies; Springer: Cham, Switzerland, 2022; pp. 105–141. ISBN 978-3-030-96523-5. [Google Scholar]
- Kathiresan, G.; Vijayakumar, K.; Sundarrajan, A.P.; Kim, H.-S.; Adaikalam, K. Photocatalytic Degradation Efficiency of ZnO, GO and PVA Nanoadsorbents for Crystal Violet, Methylene Blue and Trypan Blue Dyes. Optik 2021, 238, 166671. [Google Scholar] [CrossRef]
- Alsukaibi, A.K.D. Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of Textile Dyes in Aquatic Environment: Adverse Impacts on Aquatic Ecosystem and Human Health, and Its Management Using Bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef]
- Sahu, A.; Poler, J.C. Removal and Degradation of Dyes from Textile Industry Wastewater: Benchmarking Recent Advancements, Toxicity Assessment and Cost Analysis of Treatment Processes. J. Environ. Chem. Eng. 2024, 12, 113754. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, S.; Alkhanjaf, A.A.M.; Arora, N.K.; Saxena, B.; Umar, A.; Ibrahim, A.A.; Akhtar, M.S.; Mahajan, A.; Negi, S.; et al. Microbial Fuel Cells for Azo Dye Degradation: A Perspective Review. J. Ind. Eng. Chem. 2025, 142, 45–67. [Google Scholar] [CrossRef]
- Caguiat, J.M.E.; Tiu, E.R.U.; Go, A.D.; dela Rosa, F.M.; Punzalan, E.R. Dataset on the Decolorization of Naphthol Green B Using a UV/Sulfite System: Optimization by Response Surface Methodology. Data Brief 2024, 57, 110924. [Google Scholar] [CrossRef]
- Gunasundari, E.; Kumar, P.S.; Rajamohan, N.; Vellaichamy, P. Feasibility of Naphthol Green-B Dye Adsorption Using Microalgae: Thermodynamic and Kinetic Analysis. Desalin. Water Treat. 2020, 192, 358–370. [Google Scholar] [CrossRef]
- Showman, M.S.; Omara, R.Y.; El-Ashtoukhy, E.-S.Z.; Farag, H.A.; El-Latif, M.M.A. Formulation of Silver Phosphate/Graphene/Silica Nanocomposite for Enhancing the Photocatalytic Degradation of Trypan Blue Dye in Aqueous Solution. Sci. Rep. 2024, 14, 15885. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of Textile Dyes on Health and Ecosystem: A Review of Structure, Causes, and Potential Solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Adsorptive Removal of Organic Dyes via Porous Materials for Wastewater Treatment in Recent Decades: A Review on Species, Mechanisms and Perspectives. Chemosphere 2022, 293, 133464. [Google Scholar] [CrossRef] [PubMed]
- Ciğeroğlu, Z.; El Messaoudi, N.; Şenol, Z.M.; Başkan, G.; Georgin, J.; Gubernat, S. Clay-Based Nanomaterials and Their Adsorptive Removal Efficiency for Dyes and Antibiotics: A Review. Mater. Today Sustain. 2024, 26, 100735. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Ahmad, I.; Aftab, M.A.; Fatima, A.; Mekkey, S.D.; Melhi, S.; Ikram, S. A Comprehensive Review on the Advancement of Transition Metals Incorporated on Functional Magnetic Nanocomposites for the Catalytic Reduction and Photocatalytic Degradation of Organic Pollutants. Coord. Chem. Rev. 2024, 514, 215904. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Ahmed, A.; Boedicker, J.R.; Eliwa, E.M.; Moneam, I.A.; Elseman, A.M.; Mohamed, G.G.; Mohamed, M.M.; Salama, T.M. Water Treatment by Perovskite Materials and Their Applications: A Comprehensive Review. J. Ind. Eng. Chem. 2025, 145, 20–32. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical Development and Prospects of Photocatalysts for Pollutant Removal in Water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mohamed, A.A. Recent Progress in Semiconductor/Graphene Photocatalysts: Synthesis, Photocatalytic Applications, and Challenges. RSC Adv. 2022, 13, 421–439. [Google Scholar] [CrossRef]
- Hussain, R.T.; Hossain, M.S.; Shariffuddin, J.H. Green Synthesis and Photocatalytic Insights: A Review of Zinc Oxide Nanoparticles in Wastewater Treatment—ScienceDirect. Mater. Today Sustain. 2024, 26, 100764. [Google Scholar] [CrossRef]
- Sherryna, A.; Zerga, A.Y.; Zakaria, Z.Y.; Tahir, M.; Jusoh, M. Advances in the Morphological Design and Dimensional Approaches of Layered Double Hydroxides for Photocatalytic Applications: A Critical Review. Energy Fuels 2025, 39, 4565–4609. [Google Scholar] [CrossRef]
- Nemček, L.; Hagarová, I.; Matúš, P. Layered Double Hydroxides as Next-Generation Adsorbents for the Removal of Selenium from Water. Appl. Sci. 2024, 14, 8513. [Google Scholar] [CrossRef]
- Kloprogge, J.T. X-Ray Photoelectron Spectroscopy (XPS) Study of Layered Double Hydroxides with Different Exchangeable Anions. Appl. Sci. 2025, 15, 1318. [Google Scholar] [CrossRef]
- Khandare, S.D.; Teotia, N.; Kumar, M.; Diyora, P.; Chaudhary, D.R. Biodegradation and Decolorization of Trypan Blue Azo Dye by Marine Bacteria Vibrio Sp. JM-17. Biocatal. Agric. Biotechnol. 2023, 51, 102802. [Google Scholar] [CrossRef]
- Devi, T.B.; Ahmaruzzaman, M. AgNPs-AC Composite for Effective Removal (Degradation) of Napthol Green B Dye from Aqueous Solution. ChemistrySelect 2017, 2, 9201–9210. [Google Scholar] [CrossRef]
- Jayamani, G.; Shanthi, M. An Efficient Nanocomposite CdS-ZnWO4 for the Degradation of Naphthol Green B Dye under UV-A Light Illumination. Nano-Struct. Nano-Objects 2020, 22, 100452. [Google Scholar] [CrossRef]
- Castro, L.V.; Alcántar-Vázquez, B.; Manríquez, M.E.; Albiter, E.; Ortiz-Islas, E. Photodegradation of Emerging Pollutants Using a Quaternary Mixed Oxide Catalyst Derived from Its Corresponding Hydrotalcite. Catalysts 2025, 15, 173. [Google Scholar] [CrossRef]
- Ziyat, H.; Bennani, M.N.; Dehmani, Y.; Houssaini, J.; Allaoui, S.; Kacimi, R.; Hajjaj, H. Adsorptive Performance of a Synthesized Mg-Al Hydrotalcite Compound for Removal of Malachite Green: Kinetic, Isotherm, Thermodynamic, and Mechanism Study. Int. J. Environ. Anal. Chem. 2024, 104, 1072–1091. [Google Scholar] [CrossRef]
- Cao, S.; Cao, J.; Zhu, H.; Huang, Y.; Jin, B.; Materazzi, M. Removal of HCl from Gases Using Modified Calcined Mg-Al-CO3 Hydrotalcite: Performance, Mechanism, and Adsorption Kinetics. Fuel 2024, 355, 129445. [Google Scholar] [CrossRef]
- Bouteiba, A.; Elaziouti, A.; Benhadria, N.; Choubane, H.; Laouedj, N.; Bettahar, N. Sunlight-Driven Photocatalytic Degradation of Rhodamine B by BiOCl and TiO2 Deposited on NiCr-LDH. Int. J. Environ. Anal. Chem. 2023, 103, 6722–6741. [Google Scholar] [CrossRef]
- Chouikh, S.; Cheikh, S.; Imessaoudene, A.; Mouni, L.; Amrane, A.; Benahmed, A.; Bettahar, N. Synthesis and Characterization of the Carbonate Hydrotalcites (NiAl-HT, CoAl-HT, and NiCoAl-HT), and Its Application for Removal of the Anionic Azo Dye Titan Yellow from Aqueous Solution. Sustainability 2023, 15, 7948. [Google Scholar] [CrossRef]
- Rezak, N.; Bahmani, A.; Bettahar, N. Adsorptive Removal of P(V) and Cr(VI) by Calcined Zn-Al-Fe Ternary LDHs. Water Sci. Technol. 2021, 83, 2504–2517. [Google Scholar] [CrossRef]
- Saber, O.; Shaalan, N.M.; Ahmed, F.; Kumar, S.; Alshoaibi, A. One-Step Multi-Doping Process for Producing Effective Zinc Oxide Nanofibers to Remove Industrial Pollutants Using Sunlight. Crystals 2021, 11, 1268. [Google Scholar] [CrossRef]
- Bernard, E.; Zucha, W.J.; Lothenbach, B.; Mäder, U. Stability of Hydrotalcite (Mg-Al Layered Double Hydroxide) in Presence of Different Anions. Cem. Concr. Res. 2022, 152, 106674. [Google Scholar] [CrossRef]
- Hubetska, T.S.; Demchenko, V.Y.; Kobylinska, N.G. Chemical Design of Mg(II)/Fe(III)-Layered Double Hydroxides and Their Sorption Properties Toward Ibuprofen. Theor. Exp. Chem. 2024, 60, 64–75. [Google Scholar] [CrossRef]
- Chevinli, A.S.; Rahmatinejad, J.; Hmidi, N.; Rodrigue, D.; Ye, Z. MgFe Layered Double Hydroxide-Graphene Oxide Nanocomposite Adsorbents for Arsenic Removal. J. Water Process Eng. 2024, 59, 105017. [Google Scholar] [CrossRef]
- Lahlahi-Attalhaoui, A.; Cuadra, J.G.; Porcar, S.; Fraga, D.; Nebot-Diaz, I.; Ribeiro, R.A.P.; Paulo, J.G.; Carda, J.B. A High-Speed Method to Obtain Ni-Zn Ferrite Nanoparticles by Microwave Hydrotalcite Decomposition for Magnetic Applications. J. Alloys Compd. 2024, 1004, 175846. [Google Scholar] [CrossRef]
- Xu, M.; Pan, G.; Guo, Y.; Liang, Q.; Yu, Z.; Cao, Y.; Wang, Y. Highly Efficient Oil-Water Separation and Oil Adsorption with Hydrophobic Hydrotalcite/Polyurethane Porous Composite Foam. J. Water Process Eng. 2024, 60, 105211. [Google Scholar] [CrossRef]
- Fortunato, M.; Piccinni, M.; Pastorino, A.; Cardinale, A.M. A Thermal Study on NiAl-Citrate LDH as Catalyst Precursor for Dry Reforming Reaction. J. Therm. Anal. Calorim. 2024. [Google Scholar] [CrossRef]
- Pöyhtäri, S.; Heikkinen, E.-P.; Heikkilä, A. Kinetics of Thermal Decomposition and Hydrogen Reduction of Cobalt Compounds: A Review. Thermochim. Acta 2025, 746, 179952. [Google Scholar] [CrossRef]
- Awan, I.Z.; Ho, P.H.; Beltrami, G.; Fraisse, B.; Cacciaguerra, T.; Gaudin, P.; Tanchoux, N.; Albonetti, S.; Martucci, A.; Cavani, F.; et al. Composition Effect on the Formation of Oxide Phases by Thermal Decomposition of CuNiM(III) Layered Double Hydroxides with M(III) = Al, Fe. Materials 2024, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Piña-Pérez, Y.; Samaniego-Benitez, J.E.; Tzompantzi, F.; Lartundo-Rojas, L.; Garcia-Garcia, A.; Mantilla, A.; Romero-Ortiz, G. Photocatalytic Hydrogen Production Using Bimetallic and Trimetallic Hydrotalcite as Photocatalysts. Mater. Lett. 2023, 330, 133205. [Google Scholar] [CrossRef]
- Michele, A.D.; Boccalon, E.; Costantino, F.; Bastianini, M.; Vivani, R.; Nocchetti, M. Insight into the Synthesis of LDH Using the Urea Method: Morphology and Intercalated Anion Control. Dalton Trans. 2024, 53, 12543–12553. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH Dependent Surface Charging and Points of Zero Charge. X. Update. Adv. Colloid Interface Sci. 2023, 319, 102973. [Google Scholar] [CrossRef]
- Singh, G.; Ubhi, M.K.; Jeet, K.; Singla, C.; Kaur, M. A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites. Processes 2023, 11, 1727. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef]
- Vu, V.N.; Pham, T.H.T.; Chanthavong, M.; Do, T.H.; Nguyen, T.H.L.; Nguyen, Q.D.; Tran, T.K.N. Enhanced Photocatalytic Degradation of Rhodamine-B under Led Light Using CuZnAl Hydrotalcite Synthesized by Co-Precipitation Technique. Inorganics 2022, 10, 89. [Google Scholar] [CrossRef]
- Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts 2021, 11, 591. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, A.; Kumar, S.; Thakur, A.; Thakur, R.; Bhatia, S.K.; Sharma, A.K. Multifaceted Potential Applicability of Hydrotalcite-Type Anionic Clays from Green Chemistry to Environmental Sustainability. Chemosphere 2022, 306, 135464. [Google Scholar] [CrossRef]
- Bouddouch, A.; Akhsassi, B.; Amaterz, E.; Bakiz, B.; Taoufyq, A.; Villain, S.; Guinneton, F.; El Aamrani, A.; Gavarri, J.-R.; Benlhachemi, A. Photodegradation under UV Light Irradiation of Various Types and Systems of Organic Pollutants in the Presence of a Performant BiPO4 Photocatalyst. Catalysts 2022, 12, 691. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Xu, C.; Yang, P.; Ng, D.H.L.; Song, P.; Zuo, M. Hierarchically Porous MoS2/CoAl-LDH/HCF with Synergistic Adsorption-Photocatalytic Performance under Visible Light Irradiation. J. Alloys Compd. 2017, 698, 852–862. [Google Scholar] [CrossRef]
- Saber, O.; Osama, M.; Alshoaibi, A.; Shaalan, N.M.; Osama, D. Designing inorganic–magnetic–organic nanohybrids for producing effective photocatalysts for the purification of water. RSC Adv. 2022, 12, 18282–18295. [Google Scholar] [CrossRef] [PubMed]
Sample | Eg (eV) | a = 2d110 (Å) | c = 3d003 (Å) | Dhkl (nm) |
---|---|---|---|---|
Ti-Zn-CO3 | 3.162 | 3.075 | 22.83 | 48.895 1 |
Materials | R (%) | Kapp (min−1) | t1/2 1 (min) | R2 |
---|---|---|---|---|
Ti-Zn-CO3-TB dye | 98.83 | 0.0458 | 15.13 | 0.90 |
Ti-Zn-CO3-NGB dye | 98.36 | 0.0407 | 17.03 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamouda, S.; Bettahar, N.; Aissat, M.; Sillanpää, M.; AL-Farraj, S.; Bahmani, A. Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye. Catalysts 2025, 15, 616. https://doi.org/10.3390/catal15070616
Hamouda S, Bettahar N, Aissat M, Sillanpää M, AL-Farraj S, Bahmani A. Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye. Catalysts. 2025; 15(7):616. https://doi.org/10.3390/catal15070616
Chicago/Turabian StyleHamouda, Sarra, Nourredine Bettahar, Miloud Aissat, Mika Sillanpää, Saleh AL-Farraj, and Abdellah Bahmani. 2025. "Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye" Catalysts 15, no. 7: 616. https://doi.org/10.3390/catal15070616
APA StyleHamouda, S., Bettahar, N., Aissat, M., Sillanpää, M., AL-Farraj, S., & Bahmani, A. (2025). Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye. Catalysts, 15(7), 616. https://doi.org/10.3390/catal15070616