Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (320)

Search Parameters:
Keywords = photo-thermal conversion efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8264 KB  
Article
Semiconducting Polymer-Based Nanocomposite for Photothermal Elimination of Staphylococcus aureus Biofilm
by Pedro Sanchez, Erica Vargas, Stan Green, Madison Greer, Shaina Yates-Alston, Mariana Esposito, Li Tan and Nicole Levi
Microorganisms 2025, 13(11), 2568; https://doi.org/10.3390/microorganisms13112568 - 11 Nov 2025
Viewed by 382
Abstract
Biofilm growth on silicone (Si) medical devices is routinely treated with antibiotics or device removal; however, new approaches are needed. The current work evaluates photothermal therapy (PTT) to augment antibiotic efficacy or directly ablate Staphylococcus aureus biofilms. The semiconducting polymer, Poly [4,4-bis(2-ethylhexyl)-cyclopenta [2,1-b;3,4 [...] Read more.
Biofilm growth on silicone (Si) medical devices is routinely treated with antibiotics or device removal; however, new approaches are needed. The current work evaluates photothermal therapy (PTT) to augment antibiotic efficacy or directly ablate Staphylococcus aureus biofilms. The semiconducting polymer, Poly [4,4-bis(2-ethylhexyl)-cyclopenta [2,1-b;3,4 b’]dithiophene-2,6-diyl-alt22,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe), with a high photothermal conversion efficiency of 53.2%, was formulated into nanoparticles (BSe NPs) and incorporated into Si. Nanocomposites were stimulated with 800 nm light to generate mild hyperthermic conditions of 42 °C, or ablative temperatures above 50 °C. PTT, with or without antibiotics, was deployed against two strains of Staphylococcus aureus biofilms, Xen 29 and Xen 40, followed by an evaluation of bacterial survival, biofilm regrowth, and differential disruption of specific biofilm components. Mild hyperthermia was also used in an in vivo model of silicone implant infection. The results demonstrate a 55–59% reduction in S. aureus when PTT plus antibiotic was used in vitro, and a 51% reduction in vivo. Higher temperatures effectively eradicate both Xen 29 and Xen 40 strains, with a longer exposure time using lower laser power being optimal. Hyperthermia inhibited biofilm regrowth in both strains, resulting in a > 3 log reduction, plus increased dead cells, polysaccharides, and eDNA in treated Xen 40 biofilms. These experiments demonstrate that nanocomposite-based PTT can both reduce viable bacteria and alter individual biofilm components. Full article
(This article belongs to the Special Issue Novel Nanomaterials with Antimicrobial Activity)
Show Figures

Figure 1

31 pages, 5824 KB  
Review
Recent Advances in Photo-Responsive Microencapsulated Phase-Change Materials
by Chaofeng Yang and Binyang Du
Materials 2025, 18(21), 5014; https://doi.org/10.3390/ma18215014 - 3 Nov 2025
Viewed by 360
Abstract
Photo-responsive microencapsulated phase-change materials (MEPCMs) are attracting growing interest for their significant potential in solar energy applications and advanced intelligent thermal management systems, owing to their exceptional capacity for thermal energy storage, efficiency for photothermal conversion, and capability for multifunctional integration. This review [...] Read more.
Photo-responsive microencapsulated phase-change materials (MEPCMs) are attracting growing interest for their significant potential in solar energy applications and advanced intelligent thermal management systems, owing to their exceptional capacity for thermal energy storage, efficiency for photothermal conversion, and capability for multifunctional integration. This review provides a systematic summary of the advancements in photo-responsive MEPCMs containing photothermal, photocatalytic, and luminescent materials in the past five years, highlighting their potential in energy conversion, pollutant degradation, and intelligent sensing applications. Moreover, perspectives for future research are provided to enhance the practical application of photo-responsive MEPCMs. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

19 pages, 3248 KB  
Article
Biointegrated Conductive Hydrogel for Real-Time Motion Sensing in Exoskeleton-Assisted Lower-Limb Rehabilitation
by Ming Li, Hui Li, Yujie Su, Raymond Kai-Yu Tong and Hongliu Yu
Sensors 2025, 25(21), 6727; https://doi.org/10.3390/s25216727 - 3 Nov 2025
Viewed by 364
Abstract
Chronic lower-extremity wounds in patients undergoing exoskeleton-assisted rehabilitation require materials that can both protect tissue and enable real-time physiological monitoring. Conventional dressings lack dynamic sensing capability, while current conductive hydrogels often compromise either adhesion or electronic performance. Here, we present a biointegrated hydrogel [...] Read more.
Chronic lower-extremity wounds in patients undergoing exoskeleton-assisted rehabilitation require materials that can both protect tissue and enable real-time physiological monitoring. Conventional dressings lack dynamic sensing capability, while current conductive hydrogels often compromise either adhesion or electronic performance. Here, we present a biointegrated hydrogel (CPSD) composed of carboxymethyl chitosan (CMCS) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) forming the conductive backbone, integrated with dopamine-functionalized sodium alginate (SD); the network is assembled via electrostatic complexation and carbodiimide (EDC/NHS)-mediated covalent crosslinking. The resulting hydrogel exhibits a dense, tissue-conformal porous network with tunable swelling, stable mechanical integrity, and high photothermal conversion efficiency. In vitro assays confirmed potent antioxidant activity, strong antibacterial performance (>90% under near-infrared), and excellent cytocompatibility and hemocompatibility. CPSD shows bulk conductivity ~1.6 S·m−1, compressive modulus ~15 kPa, lap-shear adhesion on porcine skin ~9.5 kPa, and WVTR ~75 g·m−2·h−1, supporting stable biointerfaces for motion/sEMG sensing. Integrated into a lower-limb exoskeleton, CPSD hydrogels adhered securely during motion and reliably captured electromyographic and strain signals, enabling movement-intent detection. These results highlight CPSD hydrogel as a multifunctional interface material for next-generation closed-loop rehabilitation systems and mobile health monitoring. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

18 pages, 5209 KB  
Article
Interfacial Engineering of CN-B/Ti3C2 MXene Heterojunction for Synergistic Solar-Driven CO2 Reduction
by Ming Cai, Shaokun Lv, Yuanyuan Li, Wahyu Prasetyo Utomo, Yongsheng Yan, Zhi Zhu and Jun Zhao
Catalysts 2025, 15(11), 1037; https://doi.org/10.3390/catal15111037 - 2 Nov 2025
Viewed by 455
Abstract
Photocatalytic CO2 reduction holds great potential for sustainable solar fuel production, yet its practical application is often limited by inefficient charge separation and poor product selectivity. The photothermal effect presents a viable strategy to address these challenges by reducing activation energies and [...] Read more.
Photocatalytic CO2 reduction holds great potential for sustainable solar fuel production, yet its practical application is often limited by inefficient charge separation and poor product selectivity. The photothermal effect presents a viable strategy to address these challenges by reducing activation energies and accelerating reaction kinetics. In this work, we report a rationally designed CN-B/Ti3C2 heterojunction that effectively leverages photothermal promotion for enhanced CO2 reduction. The black carbon nitride (CN-B) framework, synthesized via a one-step calcination of urea and Phloxine B, exhibits outstanding photothermal conversion, reaching 131.4 °C under 300 mW cm−2 illumination, which facilitates CO2 adsorption and charge separation. Coupled with Ti3C2 MXene, the optimized composite (3:1) achieves remarkable CO and CH4 production rates of 80.21 and 35.13 μmol g−1 h−1, respectively, without any cocatalyst—representing a 2.9-fold and 8.8-fold enhancement over CN-B and g-C3N4 in CO yield. Mechanistic studies reveal that the improved performance stems from synergistic effects: a built-in electric field prolongs charge carrier lifetime (3.15 ns) and reduces interfacial resistance, while localized heating under full-spectrum light further promotes CO2 activation. In situ Fourier transform infrared (FTIR) spectroscopy confirms the accelerated formation of key intermediates (*COOH and *CO). The catalyst also maintains excellent stability over 24 h. This study demonstrates the promise of combining photothermal effects with heterojunction engineering for efficient and durable CO2 photoreduction. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic CO2 Reduction)
Show Figures

Graphical abstract

16 pages, 4751 KB  
Article
Photothermal Therapy Combined with Chemotherapy and Anti-Inflammation Therapy Weakens the Immunosuppression of Cervical Cancer
by Xiaojing Yang, Jie Fu, Yi Xu, Dejian Li and Hanru Ren
Pharmaceuticals 2025, 18(11), 1657; https://doi.org/10.3390/ph18111657 - 1 Nov 2025
Viewed by 303
Abstract
Background/Objectives: A non-toxic nano-platform which can increase drug-loading rate and synergistically increase antitumor effect is very ideal. This study provides the concept that a combination of photothermal therapy with chemotherapy and anti-inflammatory therapy will be achieved by ablation of the local tumor, robust [...] Read more.
Background/Objectives: A non-toxic nano-platform which can increase drug-loading rate and synergistically increase antitumor effect is very ideal. This study provides the concept that a combination of photothermal therapy with chemotherapy and anti-inflammatory therapy will be achieved by ablation of the local tumor, robust strategies for the suppression of distant tumors with enhanced antitumor therapy outcomes. Methods: In this study, the chemotherapeutic drug cisplatin (DDP) and the anti-inflammatory drug Aspirin-DL-Lysine (ADL) were loaded into a hollow porous nanomaterial zeolitic imidazolate framework-8 (ZIF-8), which was then coated with polydopamine, in order to form near-infrared absorption organic nanoparticles DDP-ADL@ZIF-8@PDA with excellent photothermal conversion efficiency. The antitumor efficacy of the nanodrug was evaluated through physicochemical characterization, cell biology studies, and animal experiments. Results: Photothermal therapy (PTT) of polydopamine combined with DDP and ADL can reduce inflammation and the immunosuppressive tumor microenvironment, and enhance antitumor effect. The results showed that the combined therapy could effectively eliminate the primary tumor, shrink the distant tumor, and inhibit the metastasis of the tumor. PTT in combination with chemotherapy and anti-inflammatory therapy can inhibit the expression of inflammatory factors, significantly reducing tumor immunosuppression by eliminating bone marrow-derived suppressor cells and increasing levels of cytotoxic T lymphocyte. Conclusions: This study successfully developed a DDP-ADL@ZIF-8@PDA nanomedicine for effective drug delivery, synergistic photothermal therapy, and anti-inflammatory attenuated immunotherapy to enhance treatment of human cervical cancer xenografts in mice. Overall, the combination of photothermal therapy with chemotherapy and anti-inflammatory therapy on a nano-platform has great potential for antitumor therapy applications. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 2389 KB  
Article
Experimental Study on the Heat Dissipation of Photovoltaic Panels by Spiral Coil Cold Plates
by Ruofei Tian, Yan Liu and Shuailing Ma
Energies 2025, 18(21), 5603; https://doi.org/10.3390/en18215603 - 24 Oct 2025
Viewed by 281
Abstract
Photovoltaic/Thermal (PV/T) systems are a technology designed to simultaneously convert solar energy into both electrical and thermal energy. The overall conversion efficiency of these systems can be significantly enhanced by effectively cooling the photovoltaic (PV) module. To this end, this paper presents a [...] Read more.
Photovoltaic/Thermal (PV/T) systems are a technology designed to simultaneously convert solar energy into both electrical and thermal energy. The overall conversion efficiency of these systems can be significantly enhanced by effectively cooling the photovoltaic (PV) module. To this end, this paper presents a comparative experimental study of a PV panel under three distinct configurations: operating with a no cold plate, with an ordinary cold plate, and with a spiral coil cold plate. The system’s photo-thermoelectric efficiency was evaluated by measuring key parameters, including the PV panel’s surface temperature, electrical power output, and the water tank temperature. The results indicate that the spiral coil configuration demonstrated a marked superiority in temperature regulation over the baseline case, achieving a maximum temperature reduction of 13.8 °C and an average reduction of 10.74 °C. Furthermore, a stable temperature drop exceeding 10 °C was maintained for 74.07% of the experimental duration. When compared to the ordinary cold plate, the spiral coil configuration continued to exhibit superior performance, delivering maximum and average temperature drops of 3.6 °C and 2.16 °C, respectively, while sustaining a cooling advantage of over 2 °C for 66.67% of the test period. These findings conclusively demonstrate that the spiral coil cold plate is the most effective configuration for enhancing the system’s overall performance. Full article
Show Figures

Figure 1

17 pages, 6416 KB  
Article
Novel High-Contrast Photoacoustic Imaging Method for Cancer Cell Monitoring Based on Dual-Wavelength Confocal Metalenses
by Zixue Chen, Ruihao Zhang, Hongbin Zhang, Bingqiang Zhang, Lei Qin, Jiansen Du, Tao Zhao and Bin Wang
Photonics 2025, 12(11), 1053; https://doi.org/10.3390/photonics12111053 - 24 Oct 2025
Viewed by 414
Abstract
This study proposes a high-contrast photoacoustic (PA) imaging methodology based on a dual-wavelength confocal metalens, designed to monitor the dissemination of cancer cells and to inform subsequent cancer treatment strategies. The metalens is composed of two metasurfaces that perform filtering and focusing functions, [...] Read more.
This study proposes a high-contrast photoacoustic (PA) imaging methodology based on a dual-wavelength confocal metalens, designed to monitor the dissemination of cancer cells and to inform subsequent cancer treatment strategies. The metalens is composed of two metasurfaces that perform filtering and focusing functions, effectively reducing the cross-talk between the two wavelengths of light in space and achieving a confocal effect. Furthermore, to minimize process complexity, a uniform material system of silicon dioxide (SiO2) and titanium dioxide (TiO2) is employed across the different metasurfaces of the metalens. The designed metalens has a radius of 25 µm and an operational focal length of 98.5 µm. The results confirm that this dual-metasurface design achieves high focusing efficiency alongside precise focusing capability, with the deviations of the actual focal lengths for both beams from the design values being within 1.5 µm. Additionally, this study developed a skin tissue model and simulated multi-wavelength photoacoustic imaging of cancer cells within the human body by integrating theories of radiative transfer, photothermal conversion, and the wave equation. The results demonstrate that the enhancement trend of the reconstructed signal closely matches the original signal, confirming the model’s excellent fitting performance. The sound pressure values generated by cancer cells are significantly higher than those of normal cells, proving that this method can effectively distinguish cancerous tissue from healthy tissue. This research provides new theoretical support and methodological foundations for the clinical application of multi-wavelength photoacoustic imaging technology. Full article
(This article belongs to the Special Issue The Principle and Application of Photonic Metasurfaces)
Show Figures

Figure 1

25 pages, 3357 KB  
Review
The Emerging Role of MXenes in Cancer Treatment
by Najla M. Salkho, William G. Pitt and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(21), 10296; https://doi.org/10.3390/ijms262110296 - 22 Oct 2025
Viewed by 640
Abstract
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic [...] Read more.
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic properties, which have attracted significant research interest, primarily in energy storage and biosensing applications. Since their first fabrication in 2011, there has been a rapid increase in studies investigating the use of MXenes in a wide range of applications. In this review, the synthesis methods of MXenes are discussed. Then, the potential application of MXenes in cancer treatment is highlighted based on current research. The ability of MXene to convert light, usually NIR (I and II), to heat with improved conversion efficiencies makes it a competitive candidate for photothermal cancer therapy. Moreover, the surface of MXenes can be modified with drugs or nanoparticles, thereby achieving synergistic photo/chemo/, and sonodynamic therapy. This review also examines the available research on the biocompatibility and cytotoxicity of MXenes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 1197 KB  
Article
Silver Sulfide Quantum Dots Conjugated with Anti-PSG1 Monoclonal Antibodies: Optical, Photothermal, and Cytocompatibility Assessment
by Daniel Martinez-Osuna, Imelda Olivas-Armendariz, Porfirio Estrada-Rojas, Florinda Jimenez-Vega, Mónica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Christian Chapa-Gonzalez, Santos-Adriana Martel-Estrada, Laura Elizabeth Valencia-Gomez, Mauricio Salcedo and María Fernanda Amézaga-González
Processes 2025, 13(11), 3382; https://doi.org/10.3390/pr13113382 - 22 Oct 2025
Viewed by 306
Abstract
Silver sulfide quantum dots (Ag2S QDs) are promising nanomaterials for biomedical applications due to their near-infrared emission and biocompatibility. In this study, Ag2S QDs were synthesized using bovine serum albumin (BSA) as a stabilizing and reducing agent to assess [...] Read more.
Silver sulfide quantum dots (Ag2S QDs) are promising nanomaterials for biomedical applications due to their near-infrared emission and biocompatibility. In this study, Ag2S QDs were synthesized using bovine serum albumin (BSA) as a stabilizing and reducing agent to assess their potential in targeted photothermal therapy. The QDs showed an average size of 1.06 ± 0.38 nm by DLS and 4.42 nm by TEM. Conjugation to an anti-PSG1 monoclonal antibody was performed via EDC/Sulfo-NHS chemistry and confirmed by FTIR spectroscopy, a decrease in zeta potential, and a redshift in emission. The conjugate exhibited an average size of 22.82 ± 9.7 nm and a zeta potential of +85.7 mV, indicating high colloidal stability. Fluorescence studies showed that the conjugate emits at 590 nm when excited at 560 nm, whereas the BSA-Ag2S QDs (non-conjugated) emit at 480 nm upon excitation at 400 nm, reflecting changes in optical properties due to conjugation. Thermal imaging under 808 nm laser irradiation revealed efficient photothermal conversion, with temperature increases up to 13.6 °C at 200 μg/mL and a conversion efficiency of 11.41 ± 0.04%. The conjugate was non-cytotoxic to fibroblasts but induced selective cytotoxicity in HeLa cells after laser exposure, with a selectivity index of 3.0. These findings suggest that Ag2S-BSA QDs conjugated with anti-PSG1 represent promising candidates for further investigation in cancer nanotheranostics. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

11 pages, 3558 KB  
Communication
Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer
by Cheng Lei, Zhenyu Zhang, Boyou Shao, Xiangyang Ren, Tengteng Li, Fengchao Li and Ting Liang
Photonics 2025, 12(10), 1016; https://doi.org/10.3390/photonics12101016 - 14 Oct 2025
Viewed by 438
Abstract
This study demonstrates a high-performance thermopile infrared detector that incorporates a carbon black nanoparticle (CBNP) absorption layer. To overcome the limitations associated with conventional infrared-absorbing materials—including high cost, complex fabrication, and constrained spectral response—a highly porous CBNP thin-film absorption layer was deposited onto [...] Read more.
This study demonstrates a high-performance thermopile infrared detector that incorporates a carbon black nanoparticle (CBNP) absorption layer. To overcome the limitations associated with conventional infrared-absorbing materials—including high cost, complex fabrication, and constrained spectral response—a highly porous CBNP thin-film absorption layer was deposited onto the thermopile sensing area using inkjet printing. Combined with an optimized microcavity design, this approach significantly enhances the photothermal conversion efficiency of the device. Experimental results indicate that the detector equipped with the CBNP absorption layer achieves a responsivity of 47.9 V/W and a detectivity of 1.14 × 108 cm·Hz1/2·W−1. These values represent improvements of 34.55% in responsivity and 34.28% in detectivity, respectively, compared to a reference device without the CBNP layer. This work provides a promising strategy for the development of low-cost yet high-performance infrared detectors. Full article
Show Figures

Figure 1

24 pages, 5442 KB  
Article
Electro-Spun Waste Polystyrene/Steel Slag Composite Membrane for Water Desalination: Modelling and Photothermal Activity Evaluation
by Salma Tarek Ghaly, Usama Nour Eldemerdash and Ahmed H. El-Shazly
Membranes 2025, 15(10), 294; https://doi.org/10.3390/membranes15100294 - 28 Sep 2025
Viewed by 1412
Abstract
Plastic waste and industrial residues like steel slag pose significant environmental challenges, with limited recycling solutions. This study investigates a sustainable approach by repurposing waste polystyrene and steel slag into composite membranes via electrospinning for membrane distillation applications. Steel slag incorporation enhanced membrane [...] Read more.
Plastic waste and industrial residues like steel slag pose significant environmental challenges, with limited recycling solutions. This study investigates a sustainable approach by repurposing waste polystyrene and steel slag into composite membranes via electrospinning for membrane distillation applications. Steel slag incorporation enhanced membrane porosity, hydrophobicity, and thermal stability, with process optimization performed through response surface methodology by varying slag content (0–10 wt%), voltage (15–30 kV), and feed rate (0.18–10 mL·h−1). Optimized membranes achieved a reduced fiber diameter (1.172 µm), high porosity (82.3%), and superior hydrophobicity (contact angle 102.2°). Mechanical performance improved with a 12% increase in tensile strength and a threefold rise in liquid entry pressure over pure polystyrene membranes, indicating greater durability and wetting resistance. In direct contact membrane distillation, water flux improved by 15% while maintaining salt rejection above 98%. Under photothermal membrane distillation, evaporation rates rose by 69% and solar-to-thermal conversion efficiency by 60% compared to standard PVDF membranes. These results demonstrate the feasibility of transforming waste materials into high-performance, durable membranes, offering a scalable and eco-friendly solution for sustainable desalination. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 7281 KB  
Article
Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride
by Pengcheng Dai, Hui Zhao, Dehong Yang, Yongxin Zhao, Longzhen Cheng, Huishan Chen, Dongzhi Jiang and Yilong Cui
Catalysts 2025, 15(10), 919; https://doi.org/10.3390/catal15100919 - 24 Sep 2025
Viewed by 648
Abstract
The oxidative dehydrogenation of propane (ODHP) catalyzed by oxygen offers several advantages, including resistance to carbon deposition and low energy consumption. However, achieving high propylene selectivity at industrially relevant conversions remains challenging, as existing catalysts typically require temperatures exceeding 500 °C, promoting over-oxidation [...] Read more.
The oxidative dehydrogenation of propane (ODHP) catalyzed by oxygen offers several advantages, including resistance to carbon deposition and low energy consumption. However, achieving high propylene selectivity at industrially relevant conversions remains challenging, as existing catalysts typically require temperatures exceeding 500 °C, promoting over-oxidation to COx. In this study, we developed a NiO nanoparticle-decorated graphitic carbon nitride catalyst (NiO@CN-600) via thermal polymerization–oxidation for photo-thermal synergistic ODHP. At 430 °C, thermal catalysis achieved a propane conversion of 14%. Remarkably, introducing light irradiation boosted conversion to 24%, a 10% increase. Further experimental results reveal that the photo-thermal synergistic catalysis can be described by the following mechanism: initial thermal energy provides sufficient activation energy, enabling the reaction to overcome the energy barrier and proceed smoothly. Simultaneously, the introduction of light energy enhances the activity of lattice oxygen, making it more likely to detach from the lattice and form oxygen vacancies, which in turn boosts the efficiency of the oxidation reaction on the catalyst surface. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

20 pages, 15841 KB  
Article
Sustainable Biomass-Derived Photothermal Material for Solar-Driven Seawater Desalination and Wastewater Treatment
by Jing-Bin Wu, Ming-Xi Guo, Hong-Li Fan, Feng-Hai Li, Guo-Peng Han and Qian-Qian Guo
Sustainability 2025, 17(18), 8513; https://doi.org/10.3390/su17188513 - 22 Sep 2025
Viewed by 941
Abstract
The global freshwater scarcity crisis demands sustainable solutions aligned with circular economy principles. Solar-driven steam generation (SSG) has emerged as a promising approach to obtain freshwater from seawater or wastewater using solar energy. However, its widespread application relies on the development of energy-efficient, [...] Read more.
The global freshwater scarcity crisis demands sustainable solutions aligned with circular economy principles. Solar-driven steam generation (SSG) has emerged as a promising approach to obtain freshwater from seawater or wastewater using solar energy. However, its widespread application relies on the development of energy-efficient, eco-friendly, and high-performance photothermal conversion materials. Herein, we present a sustainable strategy for converting autumn-fallen plane tree leaves into a photothermal material (AC-800) via KOH activation at 800 °C. AC-800 exhibits 91% broadband absorption (250–2500 nm). A light-absorbing layer fabricated by vacuum filtration was used for SSG tests. Under 1 sun irradiation, AC-800 achieves an evaporation rate of 1.5441 kg·m−2·h−1 with 87.1% solar-to-vapor efficiency and a surface temperature of 48.3 °C. Ten repetitive cycles of experiments using AC-800 has demonstrated the cycling stability of SSG. Desalinated water meets World Health Organization (WHO) drinking water standards, and organic dye removal from wastewater in distilled water reaches ~100%. This low-cost, eco-friendly strategy advances sustainable SSG, with potential in seawater desalination and wastewater treatment to support circular economy objectives. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

41 pages, 12467 KB  
Review
Photoactive Nanomaterials Containing Metals for Biomedical Applications: A Comprehensive Literature Review
by Dayana Lizeth Sánchez Pinzón, Daniel Bertolano Lourenço, Tiago Albertini Balbino and Thenner Silva Rodrigues
Processes 2025, 13(9), 2978; https://doi.org/10.3390/pr13092978 - 18 Sep 2025
Viewed by 622
Abstract
This review summarizes recent advances in photoactive nanomaterials containing metals and their biomedical applications, particularly in cancer diagnosis and therapy. Conventional approaches such as chemotherapy and radiotherapy suffer from low specificity, systemic toxicity, and resistance, while light-based therapies, including photothermal therapy (PTT) and [...] Read more.
This review summarizes recent advances in photoactive nanomaterials containing metals and their biomedical applications, particularly in cancer diagnosis and therapy. Conventional approaches such as chemotherapy and radiotherapy suffer from low specificity, systemic toxicity, and resistance, while light-based therapies, including photothermal therapy (PTT) and photodynamic therapy (PDT), offer minimally invasive and localized alternatives. Metal nanomaterials, especially gold and silver, exhibit unique localized surface plasmon resonance (LSPR) effects that enable efficient light-to-heat or light-to-reactive oxygen conversion, supporting precise tumor ablation, drug delivery, and imaging. We discuss strategies for structural design, surface functionalization, and encapsulation to enhance stability, targeting, and therapeutic efficiency. Emerging hybrid systems, such as carbon-based nanostructures and metal–organic frameworks, are also considered for their complementary properties. Computational modeling tools, including finite element and discrete dipole approximations, are highlighted for predicting nanomaterial performance and guiding rational design. Finally, we critically assess challenges such as toxicity, long-term biocompatibility, and clinical translation, and provide perspectives for future development. By integrating materials design, simulation, and preclinical findings, this review aims to inform the advancement of safer and more effective nanotechnology-based platforms for personalized cancer treatment and diagnosis. Full article
Show Figures

Graphical abstract

11 pages, 2878 KB  
Article
Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting
by Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie and Ting Wu
Biomimetics 2025, 10(9), 599; https://doi.org/10.3390/biomimetics10090599 - 8 Sep 2025
Viewed by 599
Abstract
The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is [...] Read more.
The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene’s outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions. Full article
(This article belongs to the Special Issue Design and Fabrication of Biomimetic Smart Materials)
Show Figures

Graphical abstract

Back to TopTop