Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural and Compositional Analyses
2.2. Catalytic ODHP Performances
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of g-C3N4 and NiO@CN-x (x = 400, 600, 800)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torres Galvis, H.M.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Gao, X.; Liu, M.; Huang, Y.; Xu, W.; Zhou, X.; Yao, S. Dimensional Understanding of Boron-Based Catalysts for Oxidative Propane Dehydrogenation: Structure and Mechanism. ACS Catal. 2023, 13, 9667–9687. [Google Scholar] [CrossRef]
- Venegas, J.M.; McDermott, W.P.; Hermans, I. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation. Acc. Chem. Res. 2018, 51, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Rightor, E.G.; Tway, C.L. Global energy & emissions reduction potential of chemical process improvements. Catal. Today 2015, 258, 226–229. [Google Scholar] [CrossRef]
- Carrero, C.A.; Schloegl, R.; Wachs, I.E.; Schomaecker, R. Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catal. 2014, 4, 3357–3380. [Google Scholar] [CrossRef]
- Xie, B.; Hu, D.; Kumar, P.; Ordomsky, V.V.; Khodakov, A.Y.; Amal, R. Heterogeneous catalysis via light-heat dual activation: A path to the breakthrough in C1 chemistry. Joule 2024, 8, 312–333. [Google Scholar] [CrossRef]
- Cavani, F.; Ballarini, N.; Cericola, A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 2007, 127, 113–131. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D.; Lu, A.-H. A viewpoint on catalytic origin of boron nitride in oxidative dehydrogenation of light alkanes. Chin. J. Catal. 2018, 39, 908–913. [Google Scholar] [CrossRef]
- Grant, J.T.; Carrero, C.A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S.P.; Specht, S.E.; McDermott, W.P.; Chieregato, A.; Hermans, I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 2016, 354, 1570–1573. [Google Scholar] [CrossRef]
- Cao, L.; Dai, P.; Tang, J.; Li, D.; Chen, R.; Liu, D.; Gu, X.; Li, L.; Bando, Y.; Ok, Y.S.; et al. Spherical Superstructure of Boron Nitride Nanosheets Derived from Boron-Containing Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 8755–8762. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D.; Song, W.; Shao, D.; Zhang, W.-P.; Lu, A.-H. Edge-hydroxylated Boron Nitride for Oxidative Dehydrogenation of Propane to Propylene. ChemCatChem 2017, 9, 1788–1793. [Google Scholar] [CrossRef]
- Xiao, F.; Naficy, S.; Casillas, G.; Khan, M.H.; Katkus, T.; Jiang, L.; Liu, H.; Li, H.; Huang, Z. Hydrogels: Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels (Adv. Mater. 44/2015). Adv. Mater 2015, 27, 7247. [Google Scholar] [CrossRef]
- Ding, D.; Yan, B.; Wang, Y.; Lu, A.-H. Fabrication of h-BN/SiO2 Nanofibers Showing High Olefins Productivity in Oxidative Dehydrogenation of Propane. ChemCatChem 2021, 13, 3312–3318. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, B.; Meng, S.; Liu, R.; Lu, W.-D.; Sheng, J.; Yi, Y.; Lu, A.-H. Plasma Tuning Local Environment of Hexagonal Boron Nitride for Oxidative Dehydrogenation of Propane. Angew. Chem. Int. Ed. 2021, 60, 19691–19695. [Google Scholar] [CrossRef]
- Altvater, N.R.; Dorn, R.W.; Cendejas, M.C.; McDermott, W.P.; Thomas, B.; Rossini, A.J.; Hermans, I. B-MWW Zeolite: The Case Against Single-Site Catalysis. Angew. Chem. Int. Ed. 2020, 59, 6546–6550. [Google Scholar] [CrossRef]
- Belgamwar, R.; Rankin, A.G.M.; Maity, A.; Mishra, A.K.; Gómez, J.S.; Trébosc, J.; Vinod, C.P.; Lafon, O.; Polshettiwar, V. Boron Nitride and Oxide Supported on Dendritic Fibrous Nanosilica for Catalytic Oxidative Dehydrogenation of Propane. ACS Sustain. Chem. Eng. 2020, 8, 16124–16135. [Google Scholar] [CrossRef]
- Grant, J.T.; McDermott, W.P.; Venegas, J.M.; Burt, S.P.; Micka, J.; Phivilay, S.P.; Carrero, C.A.; Hermans, I. Boron and Boron-Containing Catalysts for the Oxidative Dehydrogenation of Propane. ChemCatChem 2017, 9, 3623–3626. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Wang, J.; Xue, Y.; Yao, Y.; Chai, S.; Zhou, B.; Wang, X.; Zheng, N.; Yao, J. Engineering O–O Species in Boron Nitrous Nanotubes Increases Olefins for Propane Oxidative Dehydrogenation. J. Am. Chem. Soc. 2022, 144, 5930–5936. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Lu, F.; Li, W.; Mei, B.; Zhang, L.; Yan, W.; Yuan, F.; Jiang, G.; Senanayake, S.D.; et al. Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts. Nat. Commun. 2025, 16, 4639. [Google Scholar] [CrossRef]
- Venegas, J.M.; Zhang, Z.; Agbi, T.O.; McDermott, W.P.; Alexandrova, A.; Hermans, I. Why Boron Nitride is such a Selective Catalyst for the Oxidative Dehydrogenation of Propane. Angew. Chem. Int. Ed. 2020, 59, 16527–16535. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, D.-e.; Yang, Z.; Dai, S. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Acc. Chem. Res. 2023, 56, 52–65. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W.; Zhou, X.; Huang, Y.; Song, H.; Lin, L.; Wen, X.; et al. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat. Commun. 2023, 14, 1478. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Dai, P.; Wen, S.; Jiang, Y.; Liu, D.; Gu, X.; Zhang, Q.; Xia, Y.; Zhong, G.; Zhao, X.; et al. A thermostable pillared layered metal-borate- organic network featuring neighboring boron sites for oxidative dehydrogenation of propane. Matter 2023, 6, 4376–4387. [Google Scholar] [CrossRef]
- He, Z.-H.; Wu, B.-T.; Wang, Z.-Y.; Yang, S.-Y.; Wang, K.; Shi, J.-J.; He, M.-X.; Wang, W.; Liu, Z.-T. Photothermal catalytic CO2 oxidative dehydrogenation of propane to propylene over BiOX (X = Cl, Br, I) nanocatalysts. Green Chem. 2022, 24, 8270–8279. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Kadirova, Z.C.; Guo, M.; Fang, R.; He, J.; Yan, Y.; Ran, J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord. Chem. Rev. 2022, 473, 214794. [Google Scholar] [CrossRef]
- Kang, L.; Liu, X.Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Photo–thermo Catalytic Oxidation over a TiO2-WO3-Supported Platinum Catalyst. Angew. Chem. Int. Ed. 2020, 59, 12909–12916. [Google Scholar] [CrossRef]
- Yang, D.; Liu, D.; Li, Y.; Gan, H.; Xu, P.; Tian, Y.; Li, Z.; Xing, T.; Gu, X.; Li, L.; et al. Photo-thermal synergistic catalytic oxidative dehydrogenation of propane over a spherical superstructure of boron carbon nitride nanosheets. Appl. Surf. Sci. 2023, 639, 158258. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, M.; Liu, H.; Li, D.; Lei, Y. Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts. Front. Chem. 2024, 12, 1439185. [Google Scholar] [CrossRef]
- Lu, H.-Q.; Shi, L.; He, C.; Weng, W.-Z.; Huang, C.-J.; Wan, H.-L. Highly-Dispersed NiO Nanoparticles on SBA-15 for Oxidative Dehydrogenation of Propane to Propylene. Acta Phys. Chim. Sin. 2012, 28, 2697–2704. [Google Scholar] [CrossRef]
- Zhang, X.; You, R.; Li, D.; Cao, T.; Huang, W. Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in Propane Oxidation Reactions. ACS Appl. Mater. Interfaces 2017, 9, 35897–35907. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Wang, C.-C.; Huang, C.-J.; Sun, Y.-F.; Weng, W.-Z.; Wan, H.-L. Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Appl. Catal., A 2010, 382, 99–105. [Google Scholar] [CrossRef]
- Egbo, K.O.; Liu, C.P.; Ekuma, C.E.; Yu, K.M. Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations. J. Appl. Phys. 2020, 128. [Google Scholar] [CrossRef]
- Rugma, T.P.; Watts, A.; Vijayarajan, V.S.; Lakhera, S.K.; Neppolian, B. Synergistic hydrogen evolution activity of NiO/g-C3N4 photocatalysts under direct solar light irradiation. Mater. Lett. 2021, 302, 130292. [Google Scholar] [CrossRef]
- Tang, J.-y.; Guo, R.-t.; Zhou, W.-g.; Huang, C.-y.; Pan, W.-g. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B Environ. 2018, 237, 802–810. [Google Scholar] [CrossRef]
- Li, S.; Tang, Y.; Wang, M.; Kang, J.; Jin, C.; Liu, J.; Li, Z.; Zhu, J. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: Characterization, performance and mechanism. J. Alloys Compd. 2021, 880, 160547. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, D.; Zhang, L.; Wang, W. Alkaline modified g-C3N4 photocatalyst for high selective oxide coupling of benzyl alcohol to benzoin. Appl. Catal. B Environ. 2018, 220, 553–560. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer. Sci. Rep. 2016, 6, 19221. [Google Scholar] [CrossRef]
- Bhunia, K.; Khilari, S.; Chandra, M.; Pradhan, D.; Kim, S.-J. Carbon nitride anchored NiO nanoparticles as robust catalyst for electrochemical oxygen evolution reaction. J. Alloys Compd. 2023, 935, 167842. [Google Scholar] [CrossRef]
- Dong, X.; Wang, H.; Li, X.; Fatehi, P.; Wang, S.; Wu, Q.; Liu, K.; Kong, F. In-situ sulfidation to fabricate NiSx modified g-C3N4/NiO composite for efficient photocatalytic hydrogen production under visible-light. Appl. Surf. Sci. 2023, 610, 155570. [Google Scholar] [CrossRef]
- Ding, C.; Zhu, Q.; Yang, B.; Petropoulos, E.; Xue, L.; Feng, Y.; He, S.; Yang, L. Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light: Process and mechanisms. J. Environ. Sci. 2023, 126, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hou, J.; Raguin, E.; Pedersen, A.; Eren, E.O.; Senokos, E.; Tarakina, N.V.; Giusto, P.; Antonietti, M. Triazine-Based Graphitic Carbon Nitride Thin Film as a Homogeneous Interphase for Lithium Storage. ACS Nano 2024, 18, 2066–2076. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, A.; Ding, J.; Hu, R.; Gong, Y.; Li, X.; Chen, L.; Chen, P.; Tian, X. Amino modulation on the surface of graphitic carbon nitride for enhanced photocatalytic hydrogen production. Carbon 2024, 219, 118841. [Google Scholar] [CrossRef]
- Cai, J.; Huang, J.; Wang, S.; Iocozzia, J.; Sun, Z.; Sun, J.; Yang, Y.; Lai, Y.; Lin, Z. Crafting Mussel-Inspired Metal Nanoparticle-Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Adv. Mater. 2019, 31, 1806314. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lv, B.; Tao, F. NiO/g-C3N4 composite for enhanced photocatalytic properties in the wastewater treatment. Environ. Sci. Pollut. 2023, 30, 25620–25634. [Google Scholar] [CrossRef]
- Wang, J.-C.; Wang, B.; Shi, W.; Qiao, X.; Yang, X.; Zhang, L.; Zhang, W.; Li, R.; Hou, Y. Natural-sunlight-driven synchronous degradation of 4-nitrphenol and rhodamine B over S-scheme heterojunction of α-Fe2O3 nanoparticles decorated CuBi2O4 rods. J. Environ. Chem. Eng. 2022, 10, 108565. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Liang, C.; Feng, H.-P.; Liu, W. Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chem. Eng. J. 2022, 446, 137379. [Google Scholar] [CrossRef]
- Tian, J.; Feng, B.; Zhang, X.; Gu, K.; Pei, Y.; Qiao, M.; Zhang, J.; Zong, B. One-step nitrogen defect engineering of polymeric carbon nitride for visible light-driven photocatalytic O2 reduction to H2O2. J. Colloid Interface Sci. 2023, 634, 138–147. [Google Scholar] [CrossRef]
- Lu, W.-D.; Wang, D.; Zhao, Z.; Song, W.; Li, W.-C.; Lu, A.-H. Supported Boron Oxide Catalysts for Selective and Low-Temperature Oxidative Dehydrogenation of Propane. ACS Catal. 2019, 9, 8263–8270. [Google Scholar] [CrossRef]
- Cao, L.; Dai, P.; Zhu, L.; Yan, L.; Chen, R.; Liu, D.; Gu, X.; Li, L.; Xue, Q.; Zhao, X. Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane. Appl. Catal. B Environ. 2020, 262, 118277. [Google Scholar] [CrossRef]
- Zhou, H.; Yi, X.; Hui, Y.; Wang, L.; Chen, W.; Qin, Y.; Wang, M.; Ma, J.; Chu, X.; Wang, Y.; et al. Isolated boron in zeolite for oxidative dehydrogenation of propane. Science 2021, 372, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Yan, P.; Wen, S.; Bao, W.; Jiang, Y.; Zhang, Q.; Yu, N.; Zhang, Y.; Cao, K.; Dai, P.; et al. Antiexfoliating h-BN⊃In2O3 Catalyst for Oxidative Dehydrogenation of Propane in a High-Temperature and Water-Rich Environment. J. Am. Chem. Soc. 2023, 145, 6184–6193. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-C.; Yin, J.-L.; Guo, X.-J.; Chen, Y.; Lang, W.-Z.; Guo, Y.-J. Modulating the crystallinity of boron nitride for propane oxidative dehydrogenation. J. Catal. 2021, 393, 149–158. [Google Scholar] [CrossRef]
- Jiang, C.; Chang, X.; Wang, X.; Zhao, Z.-J.; Gong, J. Enhanced C–H bond activation by tuning the local environment of surface lattice oxygen of MoO3. Chem. Sci. 2022, 13, 7468–7474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E.V. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nat. Commun. 2018, 9, 3794. [Google Scholar] [CrossRef]
- Li, Y.; Han, B.; Bi, F.; Wu, Z.; Weng, X. One-Pot Synthesis of (CrMnFeCoNi)Ox High-Entropy Oxides for Efficient Catalytic Oxidation of Propane: A Promising Substitute for Noble Metal Catalysts. ACS Appl. Mater. Interfaces 2024, 16, 66108–66116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, P.; Zhao, H.; Yang, D.; Zhao, Y.; Cheng, L.; Chen, H.; Jiang, D.; Cui, Y. Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride. Catalysts 2025, 15, 919. https://doi.org/10.3390/catal15100919
Dai P, Zhao H, Yang D, Zhao Y, Cheng L, Chen H, Jiang D, Cui Y. Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride. Catalysts. 2025; 15(10):919. https://doi.org/10.3390/catal15100919
Chicago/Turabian StyleDai, Pengcheng, Hui Zhao, Dehong Yang, Yongxin Zhao, Longzhen Cheng, Huishan Chen, Dongzhi Jiang, and Yilong Cui. 2025. "Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride" Catalysts 15, no. 10: 919. https://doi.org/10.3390/catal15100919
APA StyleDai, P., Zhao, H., Yang, D., Zhao, Y., Cheng, L., Chen, H., Jiang, D., & Cui, Y. (2025). Photo-Thermal Synergistic Catalytic Oxidative Dehydrogenation of Propane over NiO Nanoparticle-Decorated Graphitic Carbon Nitride. Catalysts, 15(10), 919. https://doi.org/10.3390/catal15100919