Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer
Abstract
1. Introduction
2. Structural Design
3. Fabrication
3.1. Fabrication of CBNPs
3.2. Fabrication of Thermopile
3.3. Measurement and Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moisello, E.; Vaiana, M.; Castagna, M.E.; Bruno, G.; Brouk, I.; Nemirovsky, Y.; Malcovati, P.; Bonizzoni, E. A MEMS-CMOS Microsystem for Contact-Less Temperature Measurements. IEEE Trans. Circuits Syst. I 2022, 69, 75–87. [Google Scholar] [CrossRef]
- Wu, S.-C.; Tzou, J.-C.; Ding, C.-Y. A Low-Cost System for Measuring Wind Speed and Direction Using Thermopile Array and Artificial Neural Network. Appl. Sci. 2021, 11, 4024. [Google Scholar] [CrossRef]
- Paes, F.; Mueller, A.; Costa, B.; Ferreira, M.; Porto, M.P. Calibration uncertainty of MEMS thermopile imagers for quantitative temperature measurement. Infrared Phys. Technol. 2022, 120, 103978. [Google Scholar] [CrossRef]
- Mbarek, S.B.; Alcheikh, N.; Younis, M.I. Recent advances on MEMS based Infrared Thermopile detectors. Microsyst. Technol. 2022, 28, 1751–1764. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Yadav, I.; Ajitha, B.; Rajasekar, A.; Gupta, S.; Ashok Kumar Reddy, Y. Advancements of uncooled infrared microbolometer materials: A review. Sens. Actuators A Physical. 2022, 342, 113611. [Google Scholar] [CrossRef]
- Hou, H.; Yang, J.; Ma, X.; Zhang, D.; Bai, L.; Liu, J.; Liu, G.; Qiao, G. Micro-/nanohoneycomb-like porous silicon loaded with Ag particles leads to synergistic enhancement of photothermal and thermoelectric conversions for MEMS thermopile chip application. Sens. Actuators A Physical. 2024, 365, 114826. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, G.; Chen, S.; Feng, J.; Chen, X.; Ma, Y.; Yu, Y.; Sun, B. Fast Response Infrared Detector Using a Radially Distributed Dual-Layer Thermopile. IEEE Sens. J. 2024, 24, 1233–1244. [Google Scholar] [CrossRef]
- Minin, O.V.; Calvo-Gallego, J.; Meziani, Y.M.; Minin, I.V. Improvement of an InfraRed Pyroelectric Detector Performances in THz Range Using the Terajet Effect. Appl. Sci. 2021, 11, 7011. [Google Scholar] [CrossRef]
- Padha, B.; Yadav, I.; Dutta, S.; Arya, S. Recent Developments in Wearable NEMS/MEMS-Based Smart Infrared Sensors for Healthcare Applications. ACS Appl. Electron. Mater. 2023, 5, 5386–5411. [Google Scholar] [CrossRef]
- Masuno, K.; Kumagai, S.; Tashiro, K.; Hori, M.; Sasaki, M. Enhanced contrast of wavelength selective Mid-IR detector stable against temperature change. In Proceedings of the 2010 International Conference on Optical MEMS and Nanophotonics, Sapporo, Japan, 9–12 August 2010; pp. 137–138. [Google Scholar]
- Ishrat, C.; Yufanyi, N.; Robert, J.M.; Levy, L. Carbon black is not black carbon. Toxicol. Environ. Chem. 2021, 103, 236–237. [Google Scholar] [CrossRef]
- Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M. Carbon nanotube-based black coatings. Appl. Phys. Rev. 2018, 5, 011103. [Google Scholar] [CrossRef]
- Lei, C.; Guan, Y.; Liang, T.; Wu, X.; Bai, Y.; Gong, M.; Jia, P.; Xiong, J. Micromachined Infrared Thermopile Detector Based on a Suspended Film Structure. Photonic Sens. 2023, 13, 1–13. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, G.; Chen, S.; Sun, B.; Guan, C.; Feng, J.; Chen, X.; Ma, Y.; Yu, Y. Thermopile Infrared Detector Using Doped Polysilicon Nanocones Absorber for Selective Wavelength Absorption and Performance Enhancement. IEEE Trans. Electron Device 2024, 71, 6403–6409. [Google Scholar] [CrossRef]
- Hou, H.; Yang, J.; Liu, G.; Liu, J.; Abbas, M.; Hussain, S.; Shao, H.; Qiao, G.; Ghfar, A.A.; Ouladsmane, M.; et al. Designing Optically & Utilization of Thermopile Chip with Resonant Cavity Absorber Structure as IR Absorber. Coatings 2021, 11, 302. [Google Scholar] [CrossRef]
- Wu, J.; Shi, M.; Zhou, N.; Shi, L.; Shi, Y.; Lei, C.; Mao, H. A Non-Dispersive Infrared CO2 Sensor with a Paraboloid Chamber and a Nanoforest-Enhanced Thermopile Detector. ECS J. Solid State Sci. Technol. 2025, 14, 047005. [Google Scholar] [CrossRef]
- Bourgault, D.; Paul, G.; Latargez, C.; Shi, L.; Shi, Y.; Lei, C.; Mao, H. Thermal detector based on a suspended polyimide membrane for infrared radiation applications. Appl. Phys. Lett. 2024, 125, 1–6. [Google Scholar] [CrossRef]
- Momeni-Nasab, M.; Bidoki, S.M.; Hadizadeh, M.; Movahhedi, M. Ink-jet printed metamaterial microwave absorber using reactive inks. AEUE—Int. J. Electron. Commun. 2020, 123, 153259. [Google Scholar] [CrossRef]
- Li, Z.; Tan, S.; Li, M.; Yang, Y.; Zhang, H.; Li, X.; Xu, P. High-sensitivity differential scanning calorimetry using a MEMS thermopile chip for analyzing polymer crystallization. Analyst 2025, 150, 2231–2238. [Google Scholar] [CrossRef]
- Dai, Y.; Ali, S.Z.; Hopper, R.; Popa, D.; Udrea, F. Modeling of CMOS Single Membrane Thermopile Detector Arrays. IEEE Sens. J. 2022, 22, 1366–1373. [Google Scholar] [CrossRef]
- Ganwani, M.; Shaikh, B.; Sinha, S. Design and Investigation of MEMS-Based Thermopile Detector Arrays for Infrared Sensing Applications. In Proceedings of the 2024 IEEE Applied Sensing Conference, Goa, India, 22–24 January 2024; pp. 1–4. [Google Scholar]
- He, Y.-Q.; Wang, Y.-L.; Li, T. Simultaneously controlling heat conduction and infrared absorption with a textured dielectric film to enhance the performance of thermopiles. Microsyst. Nanoeng. 2021, 1, 36. [Google Scholar] [CrossRef]
- Yoo, K.P.; Hong, H.P.; Lee, M.J.; Min, S.J.; Park, C.W.; Choi, W.S.; Min, N.K. Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors. Meas. Sci. Technol. 2011, 22, 115206. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, G.; Chen, S.; Sun, B.; Chen, X.; Ma, Y.; Yu, Y.; Feng, J. High-Accuracy Dynamic Target Detection Through Low-Readout Channel Thermopile Infrared Array Detector Enhanced by Machine Learning Techniques. IEEE Sens. J. 2024, 24, 21300–21310. [Google Scholar] [CrossRef]
- Liang, T.; Guan, Y.; Lei, C.; Wu, X.; Bai, Y.; Xiong, J.; Qi, L. Design and Fabrication of a Low-Cost Thermopile Infrared Detector. Micromachines 2021, 12, 1134. [Google Scholar] [CrossRef]
- Bao, A.; Lei, C.; Mao, H.; Li, R.; Guan, Y. Study on a High Performance MEMS Infrared Thermopile Detector. Micromachines 2019, 10, 877. [Google Scholar] [CrossRef]
- Ashraf, S.; Mattsson, C.G.; Thungstrom, G. Fabrication of a mid-IR sensitive thermopile detector. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Hou, H.; Huang, Q.; Liu, G.; Qiao, G. Enhanced performances of CMOS-MEMS thermopile infrared detectors using novel thin film stacks. Infrared Phys. Technol. 2019, 102, 103058. [Google Scholar] [CrossRef]
- Hsu, A.L.; Herring, P.K.; Gabor, N.M.; Ha, S.; Shin, Y.C.; Song, Y.; Chin, M.; Dubey, M.; Chandrakasan, A.P.; Kong, J.; et al. Graphene-Based Thermopile for Thermal Imaging Applications. Nano Lett. 2015, 15, 7211–7216. [Google Scholar] [CrossRef]
- Alsolami, A.; Hussain, H.; Noor, R.; AlAdi, N.; Almalki, N.; Kurdi, A.; Tabbakh, T.; Zaman, A.; Alfihed, S.; Wang, J. Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors. Appl. Sci. 2024, 14, 9841. [Google Scholar] [CrossRef]
- Bardalen, E.; Bouchouri, A.; Akram, M.N.; Nguyen, H.-V. Black Silicon as Anti-Reflective Structure for Infrared Imaging Applications. Nanomaterials 2024, 14, 20. [Google Scholar] [CrossRef]
- Lee, S.L.; Chang, C.-J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalysts 2019, 9, 457. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chen, B. Research on a CMOS-MEMS Infrared Sensor with Reduced Graphene Oxide. Sensors 2020, 20, 4007. [Google Scholar] [CrossRef]
Parameter | Unit | Without CBNPs | With CBNPs | Improvement |
---|---|---|---|---|
Output Voltage | mV | 17.049 | 22.926 | 34.47% |
Responsivity | V/W | 35.6 | 47.9 | 34.55% |
Detectivity | cm·Hz1/2·W−1 | 0.849 × 108 | 1.14 × 108 | 34.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, C.; Zhang, Z.; Shao, B.; Ren, X.; Li, T.; Li, F.; Liang, T. Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer. Photonics 2025, 12, 1016. https://doi.org/10.3390/photonics12101016
Lei C, Zhang Z, Shao B, Ren X, Li T, Li F, Liang T. Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer. Photonics. 2025; 12(10):1016. https://doi.org/10.3390/photonics12101016
Chicago/Turabian StyleLei, Cheng, Zhenyu Zhang, Boyou Shao, Xiangyang Ren, Tengteng Li, Fengchao Li, and Ting Liang. 2025. "Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer" Photonics 12, no. 10: 1016. https://doi.org/10.3390/photonics12101016
APA StyleLei, C., Zhang, Z., Shao, B., Ren, X., Li, T., Li, F., & Liang, T. (2025). Design and Fabrication of Thermopile Infrared Detector Based on Carbon Black Nanoparticle Absorption Layer. Photonics, 12(10), 1016. https://doi.org/10.3390/photonics12101016