Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,979)

Search Parameters:
Keywords = phenotypic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3361 KiB  
Article
Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis
by Jiwoo Lee, Taek Soo Kim, Hyunwoong Park and Jae Hyeon Park
Life 2025, 15(8), 1227; https://doi.org/10.3390/life15081227 (registering DOI) - 3 Aug 2025
Abstract
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative [...] Read more.
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative rods were isolated from two CVC-derived blood culture sets, while peripheral cultures remained negative. Conventional identification methods, including VITEK 2, Phoenix M50, MALDI-TOF MS, and 16S rRNA and rpoB gene sequencing, failed to achieve species-level identification. WGS was performed on the isolate using Illumina MiSeq. Genomic analysis revealed a genome size of 5.39 Mb with 56.8% GC content and high assembly completeness. The highest average nucleotide identity (ANI) was 90.3% with Pantoea coffeiphila, and ≤85% with known Erwinia species, suggesting that it represents a distinct taxon. Phylogenetic analyses placed the isolate within the Erwinia clade but separate from any known species. Antimicrobial susceptibility testing showed broad susceptibility. This case highlights the utility of WGS for the identification of rare or novel organisms not captured by conventional methods and expands the clinical spectrum of Erwinia species. While the criteria for species delineation were met, the phenotypic characterization remains insufficient to formally propose a new species. Full article
Show Figures

Figure 1

11 pages, 593 KiB  
Article
Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children
by Alexandra S. Alexandrova, Adile A. Muhtarova, Vasil S. Boyanov and Raina T. Gergova
Microbiol. Res. 2025, 16(8), 181; https://doi.org/10.3390/microbiolres16080181 (registering DOI) - 3 Aug 2025
Abstract
Streptococcus pyogenes (GAS) is a leading cause of acute otitis media (AOM) and its complications. This study aimed to evaluate the antimicrobial resistance of all isolated bacterial agents recovered from children with AOM and to perform the emm typing of GAS isolates. Antibiotic [...] Read more.
Streptococcus pyogenes (GAS) is a leading cause of acute otitis media (AOM) and its complications. This study aimed to evaluate the antimicrobial resistance of all isolated bacterial agents recovered from children with AOM and to perform the emm typing of GAS isolates. Antibiotic susceptibility testing was evaluated according to EUCAST criteria. Phenotyping and genotyping were performed for the macrolide-resistant GAS isolates. All GAS isolates were subjected to emm typing. Among the 103 AOM cases considered, we identified GAS isolates (39.4%), Staphylococcus aureus (26.6%), Haemophilus influenzae (13.8%), Streptococcus pneumoniae (11.7%), Moraxella catarrhalis (7.4%), and Serratia marcescens (1.1%). GAS exhibited 32.4% macrolide resistance and 10.8% clindamycin resistance. The M phenotype and mefE gene (18.9%) were the most common, followed by cMLSB (10.8% with ermB), a combination of mefA and ermB (8.1%), and iMLSB (2.7% with ermA). The most prevalent emm types were emm12 (27.0%), emm1 (21.6%), and emm3 (16.2%). The most common GAS emm types identified among AOM patients in this study are found worldwide and are associated with invasive infections in various countries. This may influence the virulence and invasive potential of these strains. Full article
Show Figures

Figure 1

18 pages, 2044 KiB  
Review
Histopathological and Molecular Insights into Chronic Nasopharyngeal and Otic Disorders in Children: Structural and Immune Mechanisms Underlying Disease Chronicity
by Diana Szekely, Flavia Zara, Raul Patrascu, Cristina Stefania Dumitru, Dorin Novacescu, Alexia Manole, Carmen Aurelia Mogoanta, Dan Iovanescu and Gheorghe Iovanescu
Life 2025, 15(8), 1228; https://doi.org/10.3390/life15081228 (registering DOI) - 3 Aug 2025
Abstract
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular [...] Read more.
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular alterations that sustain inflammation, impair mucosal function, and promote recurrence. This narrative review synthesizes the current knowledge on the normal histology of the nasopharynx, Eustachian tube, and middle ear, and explores key pathophysiological mechanisms, including epithelial remodeling, immune cell infiltration, cytokine imbalance, and tissue fibrosis. Special emphasis is placed on the role of immunohistochemistry in defining inflammatory phenotypes, barrier dysfunction, and remodeling pathways. The presence of biofilm, epithelial plasticity, and dysregulated cytokine signaling are also discussed as contributors to disease chronicity. These findings have direct implications for diagnosis, therapeutic stratification, and postoperative monitoring. By integrating histological, immunological, and molecular data, clinicians can better characterize disease subtypes, anticipate treatment outcomes, and move toward a more personalized and biologically informed model of pediatric ENT care. Full article
(This article belongs to the Special Issue New Trends in Otorhinolaryngology)
Show Figures

Figure 1

17 pages, 3172 KiB  
Article
The Effect of Ketamine on the Immune System in Patients with Treatment-Resistant Depression
by Łukasz P. Szałach, Klaudia Ciesielska-Figlon, Agnieszka Daca, Wiesław J. Cubała and Katarzyna A. Lisowska
Int. J. Mol. Sci. 2025, 26(15), 7500; https://doi.org/10.3390/ijms26157500 (registering DOI) - 3 Aug 2025
Abstract
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 [...] Read more.
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 mg/kg iv ketamine. Blood was sampled at baseline, 4 h, and 24 h to analyze T-cell phenotypes (CD28, CD69, CD25, CD95, HLA-DR) and serum cytokines (IL-6, IL-8, IL-10, TNF-α, IL-1β, IL-12p70). In vitro, PBMCs from TRD patients and controls were exposed to low (185 ng/mL) and high (300 ng/mL) ketamine doses. Ketamine induced a transient increase in total T cells and CD4+CD25+ and CD4+CD28+ subsets at 4 h, followed by a reduction in CD4+ and an increase in CD8+ T cells at 24 h, decreasing the CD4+/CD8+ ratio. Activation markers (CD4+CD69+, CD4+HLA-DR+, CD8+CD25+, CD8+HLA-DR+) declined at 24 h. Serum IL-10 increased, IL-6 decreased, and IL-8 levels—initially elevated—showed a sustained reduction. In vitro, high-dose ketamine enhanced the proliferation of TRD CD4+ T cells and dose-dependent IL-8 and IL-6 secretion from activated cells. Ketamine induces rapid, transient immune changes in TRD, including reduced T-cell activation and cytokine modulation. A sustained IL-8 decrease suggests anti-inflammatory effects and potential as a treatment-response biomarker. Full article
Show Figures

Figure 1

11 pages, 270 KiB  
Article
Association Between Incident Chronic Kidney Disease and Body Size Phenotypes in Apparently Healthy Adults: An Observational Study Using the Korean National Health and Nutrition Examination Survey (2019–2021)
by Young Sang Lyu, Youngmin Yoon, Jin Hwa Kim and Sang Yong Kim
Biomedicines 2025, 13(8), 1886; https://doi.org/10.3390/biomedicines13081886 (registering DOI) - 3 Aug 2025
Abstract
Background/Objectives: The association between chronic kidney disease (CKD) and body size phenotypes in metabolically diverse but apparently healthy adult populations remains inadequately understood. This study investigated the association between CKD and body size phenotypes in a nationally representative sample of healthy Korean [...] Read more.
Background/Objectives: The association between chronic kidney disease (CKD) and body size phenotypes in metabolically diverse but apparently healthy adult populations remains inadequately understood. This study investigated the association between CKD and body size phenotypes in a nationally representative sample of healthy Korean adults. Methods: Data from 8227 participants in the 2019–2021 Korean National Health and Nutrition Examination Survey were analyzed. Participants were categorized into four body size phenotypes by combining BMI status (normal weight or obese) with metabolic health status (healthy or abnormal)—MHNW (Metabolically Healthy Normal Weight), MANW (Metabolically Abnormal Normal Weight), MHO (Metabolically Healthy Obese), or MAO (Metabolically Abnormal Obese). CKD was defined based on the urine albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR). To assess the association between CKD and body size phenotypes, multivariable logistic regression analyses were performed. Results: CKD prevalence was 4.4%. MANW and MAO made up 12.6% and 26.4% of the CKD group, compared to 5.0% and 13.2% of the non-CKD group. CKD prevalence by phenotype was observed as follows: MHNW, 3.2%; MANW, 10.5%; MHO, 4.0%; and MAO, 8.5%. CKD odds were highest in the MAO group (OR: 3.770, 95% CI: 2.648–5.367), followed by the MANW (OR: 2.492, 95% CI: 1.547–4.016) and MHO (OR: 1.974, 95% CI: 1.358–2.870) groups. MAO individuals carried a higher CKD risk than MHO individuals (OR: 1.897, 95% CI: 1.221–2.945). Conclusions: Among apparently healthy adults, body size phenotypes—particularly those with metabolic abnormalities—were significantly associated with the presence of CKD. These findings highlight the need to assess both metabolic health and body composition for effective CKD prevention and management. Full article
(This article belongs to the Special Issue Diabetic Nephropathy and Diabetic Atherosclerosis)
14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 (registering DOI) - 3 Aug 2025
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 (registering DOI) - 2 Aug 2025
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 (registering DOI) - 2 Aug 2025
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

12 pages, 319 KiB  
Communication
Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania
by Răzvan-Dragoș Roșu, Adriana Morar, Alexandra Ban-Cucerzan, Mirela Imre, Sebastian Alexandru Popa, Răzvan-Tudor Pătrînjan, Alexandra Pocinoc and Kálmán Imre
Antibiotics 2025, 14(8), 787; https://doi.org/10.3390/antibiotics14080787 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk [...] Read more.
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk from traditional farming systems remain limited. This study investigated the presence and antimicrobial resistance of S. aureus in 106 raw sheep milk samples collected from traditional farms in the Banat region of western Romania. Methods: Coagulase-positive staphylococci (CPS) were enumerated using ISO 6888-1:2021 protocols. Isolates were identified at the species level using the Vitek 2 system and molecularly confirmed via PCR targeting the 16S rDNA and nuc genes. Methicillin resistance was assessed by detecting the mecA gene. Antimicrobial susceptibility was determined using the Vitek 2 AST-GP79 card. Results: CPS were detected in 69 samples, with S. aureus confirmed in 34.9%. The mecA gene was identified in 13.5% of S. aureus isolates, indicating the presence of methicillin-resistant S. aureus (MRSA). Resistance to at least two antimicrobials was observed in 97.3% of isolates, and 33 strains (89.2%) met the criteria for multidrug resistance (MDR). The most frequent MDR phenotype involved resistance to lincomycin, macrolides, β-lactams, tetracyclines, and aminoglycosides. Conclusions: The high prevalence of S. aureus, including MRSA and MDR strains, in raw sheep milk from traditional farms represents a potential public health risk, particularly in regions where unpasteurized dairy consumption persists. These findings underscore the need for enhanced hygiene practices, prudent antimicrobial use, and AMR monitoring in small-scale dairy systems. Full article
13 pages, 462 KiB  
Article
Genetic Landscape of Congenital Cataracts in a Swiss Cohort: Addressing Diagnostic Oversights in Nance–Horan Syndrome
by Flora Delas, Jiradet Gloggnitzer, Alessandro Maspoli, Lisa Kurmann, Beatrice E. Frueh, Ivanka Dacheva, Darius Hildebrand, Wolfgang Berger and Christina Gerth-Kahlert
Biomedicines 2025, 13(8), 1883; https://doi.org/10.3390/biomedicines13081883 (registering DOI) - 2 Aug 2025
Abstract
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in [...] Read more.
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in female carriers. Objective: This study aimed to explore the genetic landscape of CCs in a Swiss cohort, focusing on two novel NHS and one novel GJA8 variants and their phenotypic presentation. Methods: Whole-exome sequencing (WES) was conducted on 20 unrelated Swiss families diagnosed with CCs. Variants were analyzed for pathogenicity using genetic databases, and segregation analysis was performed. Clinical data, including cataract phenotype and associated systemic anomalies, were assessed to establish genotype–phenotype correlations. Results: Potentially pathogenic DNA sequence variants were identified in 10 families, including three novel variants, one in GJA8 (c.584T>C) and two NHS variants (c.250_252insA and c.484del). Additional previously reported variants were detected in CRYBA1, CRYGC, CRYAA, MIP, EPHA2, and MAF, reflecting genetic heterogeneity in the cohort. Notably, NHS variants displayed significant phenotypic variability, suggesting dose-dependent effects and X-chromosome inactivation in female carriers. Conclusions: NHS remains underdiagnosed due to its variable expressivity and the late manifestation of systemic features, often leading to misclassification as isolated CC. This study highlights the importance of genetic testing in unexplained CC cases to improve early detection of syndromic forms. The identification of novel NHS and GJA8 variants provides new insights into the genetic complexity of CCs, emphasizing the need for further research on genotype–phenotype correlations. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

23 pages, 8591 KiB  
Article
Targeting Cellular Senescence with Liposome-Encapsulated Fisetin: Evidence of Senomorphic Effect
by Agata Henschke, Bartosz Grześkowiak, Olena Ivashchenko, María Celina Sánchez-Cerviño, Emerson Coy and Sergio Moya
Int. J. Mol. Sci. 2025, 26(15), 7489; https://doi.org/10.3390/ijms26157489 (registering DOI) - 2 Aug 2025
Abstract
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected [...] Read more.
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected for this study to evaluate its efficiency when delivered in a liposomal formulation. The experiment evaluated the impact of liposome-encapsulated fisetin on senescent cells induced by doxorubicin (DOX) from two cell lines: WI-38 (normal lung fibroblasts) and A549 (lung carcinoma). Senescence was characterized by SA-β-galactosidase (SA-β-gal) activity, proliferation, morphology, and secretion of pro-inflammatory interleukin 6 (IL-6) and interleukin 8 (IL-8). Due to fisetin’s hydrophobic nature, it was encapsulated in liposomes to enhance cellular delivery. Cellular uptake studies confirmed that the liposomes were effectively internalized by both senescent cell types. Treatment with fisetin-loaded liposomes revealed a lack of senolytic effects but showed senomorphic activity, as evidenced by a significant reduction in IL-6 and IL-8 secretion in senescent cells. The liposomal formulation enhanced fisetin’s therapeutic efficacy, showing comparable results even at the lowest tested concentration. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

33 pages, 4098 KiB  
Systematic Review
Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
by Tatiana Bobkova, Artem Bobkov and Yang Li
Pharmaceuticals 2025, 18(8), 1152; https://doi.org/10.3390/ph18081152 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate [...] Read more.
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate standardized effects of pathway inhibitors on proliferation, apoptosis, migration/invasion, IL-6/IL-8 secretion, p-AKT, and LC3; (ii) assess heterogeneity and identify key moderators of variability, including stimulus type, cell source, and inhibitor class. Methods: PubMed, Europe PMC, and the Cochrane Library were searched up to 18 May 2025 (PROSPERO CRD420251058185). Twenty of 2684 screened records met eligibility. Two reviewers independently extracted data and assessed study quality with SciRAP. Standardized mean differences (Hedges g) were pooled using a Sidik–Jonkman random-effects model with Hartung–Knapp confidence intervals. Heterogeneity (τ2, I2), 95% prediction intervals, and meta-regression by cell type were calculated; robustness was tested with REML-HK, leave-one-out, and Baujat diagnostics. Results: PI3K/AKT/mTOR inhibition markedly reduced proliferation (to –5.1 SD), IL-6 (–11.1 SD), and IL-8 (–6.5 SD) while increasing apoptosis (+2.7 SD). Fourteen of seventeen outcome clusters showed large effects (|g| ≥ 0.8), with low–moderate heterogeneity (I2 ≤ 35% in 11 clusters). Prediction intervals crossed zero only in small k-groups; sensitivity analyses shifted pooled estimates by ≤0.05 SD. p-AKT and p-mTOR consistently reflected functional changes and emerged as reliable pharmacodynamic markers. Conclusions: Targeted blockade of PI3K/AKT/mTOR robustly suppresses the proliferative and inflammatory phenotype of RA-FLSs, reaffirming this axis as a therapeutic target. The stability of estimates across multiple analytic scenarios enhances confidence in these findings and highlights p-AKT and p-mTOR as translational response markers. The present synthesis provides a quantitative basis for personalized dual-PI3K/mTOR strategies and supports the adoption of standardized long-term preclinical protocols. Full article
Show Figures

Graphical abstract

20 pages, 4847 KiB  
Article
FCA-STNet: Spatiotemporal Growth Prediction and Phenotype Extraction from Image Sequences for Cotton Seedlings
by Yiping Wan, Bo Han, Pengyu Chu, Qiang Guo and Jingjing Zhang
Plants 2025, 14(15), 2394; https://doi.org/10.3390/plants14152394 (registering DOI) - 2 Aug 2025
Abstract
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based [...] Read more.
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based on FCA-STNet. The model leverages historical sequences of cotton seedling RGB images to generate an image of the predicted growth at time t + 1 and extracts 37 phenotypic traits from the predicted image. A novel STNet structure is designed to enhance the representation of spatiotemporal dependencies, while an Adaptive Fine-Grained Channel Attention (FCA) module is integrated to capture both global and local feature information. This attention mechanism focuses on individual cotton plants and their textural characteristics, effectively reducing the interference from common field-related challenges such as insufficient lighting, leaf fluttering, and wind disturbances. The experimental results demonstrate that the predicted images achieved an MSE of 0.0086, MAE of 0.0321, SSIM of 0.8339, and PSNR of 20.7011 on the test set, representing improvements of 2.27%, 0.31%, 4.73%, and 11.20%, respectively, over the baseline STNet. The method outperforms several mainstream spatiotemporal prediction models. Furthermore, the majority of the predicted phenotypic traits exhibited correlations with actual measurements with coefficients above 0.8, indicating high prediction accuracy. The proposed FCA-STNet model enables visually realistic prediction of cotton seedling growth in open-field conditions, offering a new perspective for research in growth prediction. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

12 pages, 976 KiB  
Case Report
Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series
by Ioannis Petrakis, Eleni Drosataki, Dimitra Lygerou, Andreas Antonakis, Konstantina Kydonaki, Marinos Mitrakos, Christos Pleros, Maria Sfakiotaki, Paraskevi Xekouki and Kostas Stylianou
J. Clin. Med. 2025, 14(15), 5447; https://doi.org/10.3390/jcm14155447 (registering DOI) - 2 Aug 2025
Abstract
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic [...] Read more.
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic MEN1 mutation (c.1351-3_1359del) with a co-occurring Claudin 16 (CLDN16) variant (c.324+13C>G). Genetic testing included MLPA and whole-exome sequencing (WES), with bioinformatics analysis validating variant pathogenicity. All three patients exhibited primary hyperparathyroidism, hypercalcemia, hypercalciuria, early nephrocalcinosis, and renal hypomagnesemia. The CLDN16 variant, previously considered benign, co-segregated with hypomagnesemia and renal involvement, suggesting a potential modifying role. Conclusions: These findings support the need for comprehensive genetic screening in MEN1 patients with atypical renal presentations. Concomitant genetic variations can alter the principal phenotype. Full article
(This article belongs to the Section Nephrology & Urology)
15 pages, 9597 KiB  
Article
FvHsfB1a Gene Improves Thermotolerance in Transgenic Arabidopsis
by Qian Cao, Tingting Mao, Kebang Yang, Hanxiu Xie, Shan Li and Hao Xue
Plants 2025, 14(15), 2392; https://doi.org/10.3390/plants14152392 (registering DOI) - 2 Aug 2025
Abstract
 Heat stress transcription factor (Hsf) families play important roles in abiotic stress responses. However, previous studies reported that HsfBs genes may play diverse roles in response to heat stress. Here, we conducted functional analysis on a woodland strawberry Class B Hsf gene, FvHsfB1a [...] Read more.
 Heat stress transcription factor (Hsf) families play important roles in abiotic stress responses. However, previous studies reported that HsfBs genes may play diverse roles in response to heat stress. Here, we conducted functional analysis on a woodland strawberry Class B Hsf gene, FvHsfB1a, to improve thermotolerance. The structure of FvHsfB1a contains a typical Hsf domain for DNA binding at the N-terminus, and FvHsfB1a belongs to the B1 family of Hsfs. The FvHsfB1a protein was localized in the nucleus. The FvHsfB1a gene was expressed in various strawberry tissues and highly induced by heat treatment. Under heat stress conditions, ectopic expression of FvHsfB1a in Arabidopsis improves thermotolerance, with higher germination and survival rates, a longer primary root length, higher proline and chlorophyll contents, lower malonaldehyde (MDA) and O2− contents, better enzyme activities, and greater expression of heat-responsive and stress-related genes compared to WT. FvWRKY75 activates the promoter of the FvHsfB1a gene through recognizing the W-box element. Similarly, FvWRKY75-OE lines also displayed a heat-tolerant phenotype, exhibiting more proline and chlorophyll contents, lower MDA and O2− contents, and higher enzyme activities under heat stress. Taken together, our study indicates that FvHsfB1a is a positive regulator of heat stress.  Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Back to TopTop