Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series
Abstract
1. Introduction and Clinical Significance
2. Methods
3. Case Series Presentation
4. Discussion
4.1. Genetic and Clinical Implications
4.2. Role of Claudin-16 and the CLDN16 Variant
4.3. Clinical Significance and Management Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grozinsky-Glasberg, S.; Gross, D.J. The Multiple Endocrine Neoplasia Syndromes. In Neuroendocrine Tumours; Yalcin, S., Öberg, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kapoor, N.; Shetty, S.; Asha, H.H.; Paul, T.V. An unusual presentation of a patient with multiple endocrine neoplasia-1. J. Clin. Diagn. Res. 2014, 8, MJ01–MJ02. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raue, F.; Frank-Raue, K. Genotype-phenotype correlation in multiple endocrine neoplasia type 2. Clinics 2012, 67 (Suppl. S1), 69–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lips, C.J.; Dreijerink, K.M.; Hoppener, J.W. Variable clinical expression in patients with a germline MEN1 disease gene mutation: Clues to a genotype-phenotype correlation. Clinics 2012, 67 (Suppl. S1), 49–56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lendvai, N.; Tóth, M.; Valkusz, Z.; Bekő, G.; Szücs, N.; Csajbók, É.; Igaz, P.; Kriszt, B.; Kovács, B.; Rácz, K.; et al. Over-representation of the G12S polymorphism of the SDHD gene in patients with MEN2A syndrome. Clinics 2012, 67 (Suppl. S1), 85–89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDonnell, J.E.; Gild, M.L.; Clifton-Bligh, R.J.; Robinson, B.G. Multiple endocrine neoplasia: An update. Intern. Med. J. 2019, 49, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Matkar, S.; Thiel, A.; Hua, X. Menin: A scaffold protein that controls gene expression and cell signaling. Trends Biochem. Sci. 2013, 38, 394–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, P.; Chen, Y.; He, T.-L.; Wang, C.; Guo, S.-W.; Hu, H.; Ni, C.-M.; Jin, G.; Zhang, Y.-J. Menin Coordinates C/EBPbeta-Mediated TGF-beta Signaling for Epithelial-Mesenchymal Transition and Growth Inhibition in Pancreatic Cancer. Mol. Ther. Nucleic Acids 2019, 18, 155–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sawicki, M.P.; Gholkar, A.A.; Torres, J.Z. Menin Associates with the Mitotic Spindle and Is Important for Cell Division. Endocrinology 2019, 160, 1926–1936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papaconstantinou, M.; Pepper, A.N.; Wu, Y.; Kasimer, D.; Westwood, T.; Campos, A.R.; Bédard, P.-A.; Bergmann, A. Menin links the stress response to genome stability in Drosophila melanogaster. PLoS ONE 2010, 5, e14049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, Y.; Liu, R.; Jiang, X.; Lu, J.; Jiang, J.; Zhang, C.; Li, X.; Ning, G. Nuclear-cytoplasmic shuttling of menin regulates nuclear translocation of beta-catenin. Mol. Cell. Biol. 2009, 29, 5477–5487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karpathakis, A.; Pericleous, M.; Luong, T.V.; Khoo, B.; Thirlwell, C.; Toumpanakis, C.; Caplin, M.E. Pancreatic adenocarcinoma in a patient with multiple endocrine neoplasia 1 syndrome. Pancreas 2013, 42, 725–726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hiro, S.; Teranishi, S.; Sawazumi, T.; Nagaoka, S.; Sugimoto, C.; Nagayama, H.; Segawa, W.; Kajita, Y.; Maeda, C.; Kubo, S.; et al. Thymic atypical carcinoid tumors with elevated mitotic counts in a patient with multiple endocrine neoplasia: A case report. Thorac. Cancer 2023, 14, 1311–1315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Salameh, A.; Cadiot, G.; Calender, A.; Goudet, P.; Chanson, P. Clinical aspects of multiple endocrine neoplasia type 1. Nat. Rev. Endocrinol. 2021, 17, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.M.; Coutinho, F.L.; Toledo, R.A.; Goncalves, T.D.; Montenegro, F.L.; Toledo, S.P. Biochemical, bone and renal patterns in hyperparathyroidism associated with multiple endocrine neoplasia type 1. Clinics 2012, 67 (Suppl. S1), 99–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zofkova, I. Hypercalcemia. Pathophysiological aspects. Physiol. Res. 2016, 65, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Breiderhoff, T.; Himmerkus, N.; Drewell, H.; Plain, A.; Günzel, D.; Mutig, K.; Willnow, T.E.; Müller, D.; Bleich, M. Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria. Kidney Int. 2018, 93, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Godron, A.; Harambat, J.; Boccio, V.; Mensire, A.; May, A.; Rigothier, C.; Couzi, L.; Barrou, B.; Godin, M.; Chauveau, D.; et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: Phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin. J. Am. Soc. Nephrol. 2012, 7, 801–809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennati, G.; Cirino, M.; Benericetti, G.; Maximova, N.; Zanier, M.; Pigato, F.; Parzianello, A.; Maestro, A.; Barbi, E.; Zanon, D. Compounded Effervescent Magnesium for Familial Hypomagnesemia: A Case Report. Pharmaceuticals 2023, 16, 785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeo, G.; Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004, 11, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, Y.I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022, 23, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.D.; Salih, S.; Bessoni, J.; Bale, A.E. Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory. Genet. Med. 2005, 7, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, J.W.; Bergman, L.; Hayward, N.; Sweet, A.; Warner, J.; Marks, L.; Learoyd, D.; Dwight, T.; Robinson, B.; Epstein, M.; et al. A report of a national mutation testing service for the MEN1 gene: Clinical presentations and implications for mutation testing. J. Med. Genet. 2005, 42, 69–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jäger, A.C.; Friis-Hansen, L.; Hansen, T.V.; Eskildsen, P.C.; Sølling, K.; Knigge, U.; Hansen, C.P.; Andersen, P.H.; Brixen, K.; Feldt-Rasmussen, U.; et al. Characteristics of the Danish families with multiple endocrine neoplasia type 1. Mol. Cell. Endocrinol. 2006, 249, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Guo, T.; Liu, S.-Y.; Wang, Q.-Y.; Qu, X.-L.; Li, Y.-F.; Ou Yang, N.; Sheng, Z.-F.; Yang, Y.-Y. Association between hypomagnesemia and severity of primary hyperparathyroidism: A retrospective study. BMC Endocr. Disord. 2021, 21, 170. [Google Scholar] [CrossRef]
- Tsukada, T.; Nagamura, Y.; Ohkura, N. MEN1 gene and its mutations: Basic and clinical implications. Cancer Sci. 2009, 100, 209–215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Laitman, Y.; Jaffe, A.; Schayek, H.; Friedman, E. De novo mutation in MEN1 is not associated with parental somatic mosaicism. Endocr. Relat. Cancer 2017, 24, L1–L3. [Google Scholar] [CrossRef] [PubMed]
- Milne, T.A.; Hughes, C.M.; Lloyd, R.; Yang, Z.; Rozenblatt-Rosen, O.; Dou, Y.; Schnepp, R.W.; Krankel, C.; LiVolsi, V.A.; Gibbs, D.; et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl. Acad. Sci. USA 2005, 102, 749–754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaguchi, H.; Ohkura, N.; Takahashi, M.; Nagamura, Y.; Kitabayashi, I.; Tsukada, T. Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol. Cell. Biol. 2004, 24, 6569–6580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Laat, J.M.; van der Luijt, R.B.; Pieterman, C.R.C.; Oostveen, M.P.; Hermus, A.R.; Dekkers, O.M.; de Herder, W.W.; van der Horst-Schrivers, A.N.; Drent, M.L.; Bisschop, P.H.; et al. MEN1 redefined, a clinical comparison of mutation-positive and mutation-negative patients. BMC Med. 2016, 14, 182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mele, C.; Mencarelli, M.; Caputo, M.; Mai, S.; Pagano, L.; Aimaretti, G.; Scacchi, M.; Falchetti, A.; Marzullo, P. Phenotypes Associated with MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front. Endocrinol. 2020, 11, 591501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kövesdi, A.; Tóth, M.; Butz, H.; Szücs, N.; Sármán, B.; Pusztai, P.; Tőke, J.; Reismann, P.; Fáklya, M.; Tóth, G.; et al. True MEN1 or phenocopy? Evidence for geno-phenotypic correlations in MEN1 syndrome. Endocrine 2019, 65, 451–459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergman, L.; Teh, B.; Cardinal, J.; Palmer, J.; Walters, M.; Shepherd, J.; Cameron, D.; Hayward, N. Identification of MEN1 gene mutations in families with MEN 1 and related disorders. Br. J. Cancer 2000, 83, 1009–1014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, S.K.; Kester, M.B.; Debelenko, L.V.; Heppner, C.; Emmert-Buck, M.R.; Skarulis, M.C.; Doppman, J.L.; Kim, Y.S.; Lubensky, I.A.; Zhuang, Z.; et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum. Mol. Genet. 1997, 6, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, D.K.; Langer, P.; Wild, A.; Schilling, T.; Celik, I.; Rothmund, M.; Nies, C. Pancreaticoduodenal endocrine tumors in multiple endocrine neoplasia type 1: Surgery or surveillance? Surgery 2000, 128, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Tognarini, I.; Sala, S.C.; Galli, G.; Falchetti, A.; Brandi, M.L. Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients. Cancer Gene Ther. 2010, 17, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s second hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thevenon, J.; Bourredjem, A.; Faivre, L.; Cardot-Bauters, C.; Calender, A.; Murat, A.; Giraud, S.; Niccoli, P.; Odou, M.-F.; Borson-Chazot, F.; et al. Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: A Groupe d’etude des Tumeurs Endocrines (GTE) cohort study. Hum. Mol. Genet. 2013, 22, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Agarwal, S.K. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J. Mol. Endocrinol. 2018, 61, R13–R24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Green, P.; Zagzag, J.; Patel, D.; Weinstein, L.S.; Simonds, W.F.; Blau, J.; Marx, S.; Kebebew, E.; Perrier, N.; Nilubol, N. High prevalence of chronic kidney disease in patients with multiple endocrine neoplasia type 1 and improved kidney function after parathyroidectomy. Surgery 2019, 165, 124–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marini, F.; Giusti, F.; Fossi, C.; Cioppi, F.; Cianferotti, L.; Masi, L.; Boaretto, F.; Zovato, S.; Cetani, F.; Colao, A.; et al. Multiple endocrine neoplasia type 1: Analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database. Endocrine 2018, 62, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lee, K.S.; Choi, J.K. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 2021, 40, 1347–1361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frische, S.; Alexander, R.T.; Ferreira, P.; Tan, R.S.G.; Wang, W.; Svenningsen, P.; Skjødt, K.; Dimke, H. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am. J. Physiol. Renal Physiol. 2021, 320, F74–F86. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Renigunta, V.; Himmerkus, N.; Zhang, J.; Renigunta, A.; Bleich, M.; Hou, J. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012, 31, 1999–2012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rejnmark, L.; Vestergaard, P.; Mosekilde, L. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2011, 96, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Benabe, J.E.; Martinez-Maldonado, M. Hypercalcemic nephropathy. Arch. Intern. Med. 1978, 138, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Afshar, R.; Sanavi, S.; Taheri, H.R. Acute renal failure as an initial manifestation of multiple endocrine neoplasia (MEN) type 1. Saudi. J. Kidney Dis. Transpl. 2012, 23, 117–121. [Google Scholar] [PubMed]
- Eller-Vainicher, C.; Chiodini, I.; Battista, C.; Viti, R.; Mascia, M.L.; Massironi, S.; Peracchi, M.; D’AGruma, L.; Minisola, S.; Corbetta, S.; et al. Sporadic and MEN1-related primary hyperparathyroidism: Differences in clinical expression and severity. J. Bone Miner. Res. 2009, 24, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.M.; Coutinho, F.L.; Toledo, R.A.; Montenegro, F.L.; Correia-Deur, J.E.; Toledo, S.P. Early-onset, progressive, frequent, extensive, and severe bone mineral and renal complications in multiple endocrine neoplasia type 1-associated primary hyperparathyroidism. J. Bone Miner. Res. 2010, 25, 2382–2391. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Katoh, T.; Sakuma, Y.; Takahashi, M.; Asahi, K.; Hashimoto, S.; Kosugi, S.; Suzuki, S.; Takenoshita, S.; Watanabe, T. Multiple endocrine neoplasia type 1 in end-stage renal failure. Clin. Exp. Nephrol. 2004, 8, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Zhu, J.; Zhou, Y.; Liang, L.; Yang, Y.; Xu, L.; Zhang, T.; Li, P.; Pan, T.; Guo, B.; et al. Loss of MEN1 leads to renal fibrosis and decreases HGF-Adamts5 pathway activity via an epigenetic mechanism. Clin. Transl. Med. 2022, 12, e982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, J.; Yu, C.; Zhang, C.; Guan, Y.; Zhang, Y.; Tolbert, E.; Zhang, W.; Zhao, T.; Bayliss, G.; Li, X.; et al. Inhibition of MLL1-menin interaction attenuates renal fibrosis in obstructive nephropathy. FASEB J. 2023, 37, e22712. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrakis, I.; Drosataki, E.; Lygerou, D.; Antonakis, A.; Kydonaki, K.; Mitrakos, M.; Pleros, C.; Sfakiotaki, M.; Xekouki, P.; Stylianou, K. Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series. J. Clin. Med. 2025, 14, 5447. https://doi.org/10.3390/jcm14155447
Petrakis I, Drosataki E, Lygerou D, Antonakis A, Kydonaki K, Mitrakos M, Pleros C, Sfakiotaki M, Xekouki P, Stylianou K. Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series. Journal of Clinical Medicine. 2025; 14(15):5447. https://doi.org/10.3390/jcm14155447
Chicago/Turabian StylePetrakis, Ioannis, Eleni Drosataki, Dimitra Lygerou, Andreas Antonakis, Konstantina Kydonaki, Marinos Mitrakos, Christos Pleros, Maria Sfakiotaki, Paraskevi Xekouki, and Kostas Stylianou. 2025. "Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series" Journal of Clinical Medicine 14, no. 15: 5447. https://doi.org/10.3390/jcm14155447
APA StylePetrakis, I., Drosataki, E., Lygerou, D., Antonakis, A., Kydonaki, K., Mitrakos, M., Pleros, C., Sfakiotaki, M., Xekouki, P., & Stylianou, K. (2025). Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series. Journal of Clinical Medicine, 14(15), 5447. https://doi.org/10.3390/jcm14155447