Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Procedures
2.2. Microbiological Testing
2.3. H. influenzae—Capsule Detection
2.4. Antimicrobial Susceptibility Testing
2.5. Antimicrobial Resistance Phenotyping of S. pyogenes
2.6. PCR for Macrolide Resistance Genes in S. pyogenes
2.7. S. pyogenes emm Typing
3. Results
3.1. Bacterial Investigation
3.2. Antimicrobial Resistance of Otopathogenic Bacteria
3.3. Capsular Typing of H. influenzae
3.4. Emm Typing of S. pyogenes Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustamante, J.; Tran, T.; Rodriguez, C. Otitides: Acute and chronic otitis media and externa. Prim. Care Clin. Off. Pract. 2025, 52, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Leibovitz, E.; Broides, A.; Greenberg, D.; Newman, N. Current management of pediatric acute otitis media. Expert. Rev. Anti Infect. Ther. 2010, 8, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Sawada, S.; Okutani, F.; Kobayashi, T. Comprehensive detection of respiratory bacterial and viral pathogens in the middle ear fluid and nasopharynx of pediatric patients with acute otitis media. Pediatr. Infect. Dis. J. 2019, 38, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Segal, N.; Givon-Lavi, N.; Leibovitz, E.; Yagupsky, P.; Leiberman, A.; Dagan, R. Acute otitis media caused by Streptococcus pyogenes in children. Clin. Infect. Dis. 2005, 41, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.; LaRock, C. Group A Streptococcus interactions with the host across time and space. Curr. Opin. Microbiol. 2024, 77, 102420. [Google Scholar] [CrossRef]
- Manzanares, Á.; Aguilera-Alonso, D.; Escobar, M.; Vigil-Vázquez, S.; Cercenado, E.; Saavedra-Lozano, J.; Mastoiditis-Gregorio Marañón Working Group. Changes in the epidemiology of acute mastoiditis according to the implementation of pneumococcal vaccination in a Spanish population. Enferm. Infect. Microbiol. Clin. 2025, 43, 361–364. [Google Scholar] [CrossRef]
- Alexandrova, A.S.; Pencheva, D.R.; Mitov, I.G.; Setchanova, L.P. Clonal distribution, antimicrobial resistance, and pilus islets in S. pneumoniae isolates recovered from PCV10-vaccinated children with suppurative AOM in Bulgaria (2015–2020). Jpn. J. Infect. Dis. 2022, 75, 92–95. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Li, M.; Gao, X.; Wu, H.; Dong, W.; Wei, L. Streptococcus pyogenes: Pathogenesis and the Current Status of Vaccines. Vaccines 2023, 11, 1510. [Google Scholar] [CrossRef]
- Campbell, P.T.; Tong, S.Y.C.; Geard, N.; Davies, M.R.; Worthing, K.A.; Lacey, J.A.; Smeesters, P.R.; Batzloff, M.R.; Kado, J.; Jenney, A.W.J.; et al. Longitudinal Analysis of Group A Streptococcus emm types and emm clusters in a high-prevalence setting: Relationship between past and future infections. J. Infect. Dis. 2020, 221, 1429–1437. [Google Scholar] [CrossRef]
- Davies, M.R.; Holden, M.T.G.; Coupland, P.; Chen, J.H.; Venturini, C.; Barnett, T.C.; Zakour, N.L.; Tse, H.; Dougan, G.; Yuen, K.Y.; et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 2015, 47, 84–87. [Google Scholar] [CrossRef]
- Kroll, S.; Loynds, B.; Brophy, L.; Moxon, E.R. The bex locus in encapsulated Haemophilus influenzae: A chromosomal region involved in capsule polysaccharide export. Mol. Microbiol. 1990, 4, 1853–1862. [Google Scholar] [CrossRef]
- Davis, G.S.; Sandstedt, S.A.; Patel, M.; Marrs, C.F.; Gilsdorf, J.R. Use of bexB to detect the capsule locus in Haemophilus influenzae. J. Clin. Microbiol. 2011, 7, 2594–2601. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: http://www.eucast.org (accessed on 1 January 2025).
- Powell, L.M.; Choi, S.J.; Grund, M.E.; Demkowicz, R.; Berisio, R.; LaSala, P.R.; Lukomski, S. Regulation of erm(T) MLSB phenotype expression in the emergent emm92 type group A Streptococcus. NPJ Antimicrob. Resist. 2024, 2, 44. [Google Scholar] [CrossRef] [PubMed]
- Gerber, A.M. Antibiotic resistance in group A streptococci. Pediatr. Clin. North. Am. 1995, 42, 539–551. [Google Scholar] [CrossRef]
- Malhotra-Kumar, S.; Lammens, C.; Piessens, J.; Goossens, H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob. Agents Chemother. 2005, 49, 4798–4800. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Emm Typing Protocol for M Protein Gene Sequencing. 2023. Available online: https://www.cdc.gov/streplab/groupa-strep/emm-typing-protocol.html (accessed on 25 March 2025).
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics 2024, 13, 360. [Google Scholar] [CrossRef]
- Alexandrova, A.; Preslava, H.; Hitkova, H.; Gergova, R. A significant role of Non-typeable H. influenzae in acute otitis media in Bulgarian children. Pediatr. Infect. Dis. J. 2023, 18, 163–167. [Google Scholar] [CrossRef]
- Alexandrova, A.; Pencheva, D.; Mitov, I.; Setchanova, L. Phenotypic and genotypic characteristics of non-invasive S. pneumoniae isolates recovered from PCV10-vaccinated children in Bulgaria. Indian. J. Med. Microbiol. 2022, 40, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Tzovara, I.; Doudoulakakis, A.; Kalogeras, G.; Koutouzis, E.; Dellis, C.; Pasparakis, S.; Charakida, M.; Lebessi, E.; Bozavoutoglou, E.; Tsakanikos, M.; et al. Bacterial acute otitis media complicated with otorrhea in a children’s hospital in the era of pneumococcal conjugate vaccines. Pathogens 2025, 14, 494. [Google Scholar] [CrossRef]
- Draut, S.; Müller, J.; Hempel, J.M.; Schrötzlmair, F.; Simon, F. Tenfold increase: Acute pediatric mastoiditis before, during, and after COVID-19 restrictions. Otol. Neurotol. 2024, 45, 777–782. [Google Scholar] [CrossRef]
- Boia, E.R.; Huț, A.R.; Roi, A.; Luca, R.E.; Munteanu, I.R.; Roi, C.I.; Riviș, M.; Boia, S.; Duse, A.O.; Vulcănescu, D.D.; et al. Associated Bacterial Coinfections in COVID-19-Positive Patients. Medicina 2023, 59, 1858. [Google Scholar] [CrossRef]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef]
- Gergova, R.; Petrova, G.; Gergov, S.; Minchev, P.; Mitov, I.; Strateva, T. Microbiological features of upper respiratory tract infections in Bulgarian children for the period 1998–2014. Balkan Med. J. 2016, 33, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Muhtarova, A.; Mihova, K.; Markovska, R.; Mitov, I.; Kaneva, R.; Gergova, R. Molecular emm typing of Bulgarian macrolide-resistant Streptococcus pyogenes isolates. Acta Microbiol. Immunol. Hung. 2019, 67, 14–17. [Google Scholar] [CrossRef]
- Muhtarova, A.; Gergova, R.; Mitov, I. Distribution of macrolide resistance mechanisms in Bulgarian clinical isolates of Streptococcus pyogenes during the years of 2013–2016. J. Glob. Antimicrob. Resist. 2017, 10, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Srivastava, P.; Nirwan, P.S. Prevalence of MLSB Resistance and Observation of erm A and erm C genes at a tertiary care hospital. J. Clin. Diagn. Res. 2015, 9, DC08-10. [Google Scholar] [CrossRef]
- Khodabandeh, M.; Mohammadi, M.; Abdolsalehi, M.R.; Alvandimanesh, A.; Gholami, M.; Bibalan, M.H.; Pournajaf, A.; Kafshgari, R.; Rajabnia, R. Analysis of resistance to macrolide-lincosamide-streptogramin B Among mecA-positive Staphylococcus aureus isolates. Osong Public. Health Res. Perspect. 2019, 10, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.F.; Mobashery, S. β-Lactams against the fortress of the Gram-Positive Staphylococcus aureus bacterium. Chem. Rev. 2021, 121, 3412–3463. [Google Scholar] [CrossRef]
- Fuji, N.; Pichichero, M.; Kaur, R. Haemophilus influenzae prevalence, proportion of capsulated strains and antibiotic susceptibility during colonization and acute otitis media in children, 2019–2020. Pediatr. Infect. Dis. J. 2021, 40, 792–796. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Su, L.H.; Hsu, M.H.; Chiu, C.H. Alterations of penicillin-binding proteins in pneumococci with stepwise increase in β-lactam resistance. Pathog. Dis. 2013, 67, 84–88. [Google Scholar] [CrossRef]
- Gavrilovici, C.; Spoială, E.L.; Miron, I.C.; Stârcea, I.M.; Haliţchi, C.O.I.; Zetu, I.N.; Lupu, V.V.; Pânzaru, C. Acute otitis media in children-challenges of antibiotic resistance in the post-vaccination era. Microorganisms 2022, 10, 1598. [Google Scholar] [CrossRef]
- Alexandrova, A.S.; Boyanov, V.S.; Mihova, K.Y.; Gergova, R.T. Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients. Int. J. Mol. Sci. 2024, 25, 9769. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Shi, J.; Han, L.; Yang, C.; Lu, S. Pathogenicity and Bro gene typing of pediatric lower respiratory tract infections with Moraxella catarrhalis in Southwest Shandong, China. Sci. Rep. 2025, 15, 15070. [Google Scholar] [CrossRef]
- Tavares-Carreon, F.; De Anda-Mora, K.; Rojas-Barrera, I.C.; Andrade, A. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: A literature review. PeerJ 2023, 11, e14399. [Google Scholar] [CrossRef]
- McMillan, D.; Drèze, P.A.; Vu, T.; Bessen, D.; Guglielmini, J.; Steer, A.; Carapetis, J.R.; van Melderen, L.; Sriprakash, K.S.; Smeesters, P.R. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin. Microbiol. Infect. 2013, 19, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Smeesters, P.; McMillan, D.; Sriprakash, K. The streptococcal M protein: A highly versatile molecule. Trends Microbiol. 2010, 18, 275–282. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Emm Sequence Database. 2021. Available online: https://www2.cdc.gov/vaccines/biotech/strepblast.asp (accessed on 25 March 2025).
- Gergova, R.; Muhtarova, A.; Mitov, I.; Setchanova, L.; Mihova, K.; Kaneva, R.; Markovska, R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect. Dis. 2019, 51, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Steer, A.C.; Law, I.; Matatolu, L.; Beall, B.W.; Carapetis, J.R. Global emm type distribution of group A streptococci: Systematic review and implications for vaccine development. Lancet Infect. Dis. 2009, 9, 611–616. [Google Scholar] [CrossRef]
- Luca-Harari, B.; Darenberg, J.; Neal, S.; Siljander, T.; Strakova, L.; Tanna, A.; Creti, R.; Ekelund, K.; Koliou, M.; Tassios, P.T.; et al. Strep-EURO Study Group. Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe. J. Clin. Microbiol. 2009, 47, 1155–1165. [Google Scholar] [CrossRef]
- Ünübol, N.; Caglayan, N.; Cebeci, S.; Beşli, Y.; Sancak, B.; Uyar, N.Y.; Ahrabi, S.S.; Alebouyeh, M.; Kocagöz, T. Antimicrobial resistance and epidemiological patterns of Streptococcus pyogenes in Turkiye. J. Infect. Public. Health. 2025, 18, 102633. [Google Scholar] [CrossRef]
- Tyrrell, G.; Croxen, M.; McCullough, E.; Li, V.; Golden, A.; Martin, I. Group A streptococcal infections in Alberta, Canada 2018–2023. Epidemiol. Infect. 2024, 153, e35. [Google Scholar] [CrossRef] [PubMed]
- Bellés-Bellés, A.; Prim, N.; Mormeneo-Bayo, S.; Villalón-Panzano, P.; Valiente-Novillo, M.; Jover-Sáenz, A.; Aixalà, N.; Bernet, A.; López-González, É.; Prats, I.; et al. Changes in Group A Streptococcus emm types associated with invasive infections in adults, Spain, 2023. Emerg. Infect. Dis. 2023, 29, 2390–2392. [Google Scholar] [CrossRef] [PubMed]
Sex (n, %) | Age (n) | Sampling of MEF * Specimens (n) | Empirical Ab Therapy (n/All Cases) ** |
---|---|---|---|
Male (n = 62, 60.2%) | 0–2 (n = 3) 3–6 (n = 21) 7–14 (n = 38) | Tympanocentesis (n = 19) | n = 22/62 cases |
Spontaneous otorrhea (n = 43) | |||
Female (n = 41, 39.8%) | 0–2 (n = 1) 3–6 (n = 26) 7–14 (n = 14) | Tympanocentesis (n = 11) | n = 13/41 cases |
Spontaneous otorrhea (n = 30) | |||
Total (100%) | n = 103 | n = 103 | n = 35/103 cases |
Bacterial Coinfection | n * |
---|---|
S. pyogenes + S. aureus | n = 5 |
S. pyogenes + S. pneumoniae | n = 2 |
S. pneumoniae + M. catarrhalis | n = 2 |
S. pneumoniae + S. aureus | n = 1 |
M. catarrhalis + H. influenzae | n = 1 |
M. catarrhalis + S. aureus | n = 1 |
S. pyogenes + S. pneumoniae + S. aureus | n = 1 |
Total (n) | n = 13 |
Pen G | Amx | Amc | Cxm | Cro | Ery | Cli | Mero | |
---|---|---|---|---|---|---|---|---|
S. pyogenes n = 37 (39.4%) | 0 | 0 | 0 | 0 | 0 | 12 (32.4) | 4 (10.8) | 0 |
S. aureus n = 25 (26.6%) | 23 (92.0) | 23 (92.0) | 1 (4.0) | 1 (4.0) | 1 (4.0) | 9 (36.0) | 5 (25.0) | 0 |
H. influenzae n = 13 (13.8%) | 2 (15.4) | 2 (15.4) | 0 | 0 | 0 | - | - | 0 |
S. pneumoniae n = 11 (11.7%) | 2 (22.2) | 2 (22.2) | 1 (11.1) | 3 (33.3) | 0 | 6 (66.7) | 5 (55.6) | 0 |
M. catarrhalis n = 7 (7.4%) | 7 (100) | 7 (100) | 0 | 0 | 0 | 0 | 0 | 0 |
S. marcescens n = 1 (1.1%) | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 0 | - | - | 0 |
Cluster | emm Type | n * | Macrolide Resistance Determinants | |||
---|---|---|---|---|---|---|
mefA | ermA | ermB | ermB + mefA | |||
A-C4 (29.7%) | emm12 emm12.5 | 10 | 5 | 1 | 3 | |
1 | ||||||
A-C5 (24.3%) | emm3 emm3.1 | 6 | 2 | |||
3 | ||||||
A-C3 (21.6%) | emm1 | 8 | 1 | |||
E4 (10.8%) | emm2 emm28 | 1 | 2 | |||
3 | ||||||
E3 (2.7%) | emm44 | 1 | 1 | |||
E6 (2.7%) | emm75 | 1 | 1 | |||
Y-M6 (8.1%) | emm6 emm6.4 | 2 | ||||
1 | ||||||
100% | 37 | 7 (18.9%) | 1(2.7%) | 5 (13.5%) | 3 (8.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrova, A.S.; Muhtarova, A.A.; Boyanov, V.S.; Gergova, R.T. Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children. Microbiol. Res. 2025, 16, 181. https://doi.org/10.3390/microbiolres16080181
Alexandrova AS, Muhtarova AA, Boyanov VS, Gergova RT. Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children. Microbiology Research. 2025; 16(8):181. https://doi.org/10.3390/microbiolres16080181
Chicago/Turabian StyleAlexandrova, Alexandra S., Adile A. Muhtarova, Vasil S. Boyanov, and Raina T. Gergova. 2025. "Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children" Microbiology Research 16, no. 8: 181. https://doi.org/10.3390/microbiolres16080181
APA StyleAlexandrova, A. S., Muhtarova, A. A., Boyanov, V. S., & Gergova, R. T. (2025). Burden of Streptococcus pyogenes and emm12 Type in Severe Otitis Media Among Children. Microbiology Research, 16(8), 181. https://doi.org/10.3390/microbiolres16080181