Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,122)

Search Parameters:
Keywords = phenol mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1039 KiB  
Article
Unveiling the Nutritional Quality of the Sicilian Strawberry Tree (Arbutus unedo L.), a Neglected Fruit Species
by Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Angela Giorgia Potortì, Roberto Sturniolo, Vincenzo Lo Turco and Giuseppa Di Bella
Foods 2025, 14(15), 2734; https://doi.org/10.3390/foods14152734 - 5 Aug 2025
Abstract
Although the strawberry tree (A. unedo L.) has been long considered a neglected species of the Mediterranean maquis, the valorization of its fruit production may enhance its socioeconomic value, especially in rural areas. In this study, strawberry trees from different Sicilian sites [...] Read more.
Although the strawberry tree (A. unedo L.) has been long considered a neglected species of the Mediterranean maquis, the valorization of its fruit production may enhance its socioeconomic value, especially in rural areas. In this study, strawberry trees from different Sicilian sites were investigated in terms of macronutrients, fatty acid (FA) composition, tocopherols, total phenols, carotenoids, and minerals. Sicilian berries were a good source of carbohydrates (mainly fructose, glucose and sucrose) and dietary fiber. They were low in fat; however, the FA composition revealed the abundance of unsaturated FAs over saturated FAs and an advantageous n-6/n-3 ratio. Additionally, Sicilian berries showed an inversed linoleic/α-linolenic acid ratio with respect to berries from other Mediterranean regions, that had previously investigated in literature. This evidence suggests that this ratio may have a chemotaxonomic relevance. Considering antioxidants, the fruits had levels of tocopherols, particularly α-tocopherol, total phenols and carotenoids similar to those of certain commercial fruits. Precious amounts of minerals, such as Ca, K, Zn and Fe were also determined. Interestingly, berries harvested near a Sicilian volcanic area had higher levels of minerals, as well as tocopherols, phenols and carotenoids, than fruits from other Sicilian sites, thereby advancing the hypothesis that fruits from volcanic areas may have a superior nutritional value. Overall, data from this study elaborated by a proper statistical analysis revealed that the geographical origin was a relevant variable to consider in the reliable study of this fruit species. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables—3rd Edition)
Show Figures

Figure 1

46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 299
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

13 pages, 487 KiB  
Article
From Waste to Worth: Utilizing Downgraded Greek Chestnuts in Gluten-Free Functional Biscuits
by Vasiliki Kossyva, Mariastela Vrontaki, Vasileios Manouras, Anastasia Tzereme, Ermioni Meleti, Lamprini Dimitriou, Ioannis Maisoglou, Maria Alexandraki, Michalis Koureas, Eleni Malissiova and Athanasios Manouras
Sci 2025, 7(3), 106; https://doi.org/10.3390/sci7030106 - 2 Aug 2025
Viewed by 159
Abstract
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour [...] Read more.
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour ingredient in the biscuit formulation, in order to assess its nutritional and functional contribution. The moisture, lipid, protein, and ash contents were analyzed in chestnut flour samples, which showed significant regional differences. Chestnut flour biscuits (CFB) were compared to wheat flour biscuits (WFB). CFB exhibited significantly higher ash content (3.01% compared to 0.94% in WFB) and greater antioxidant capacity, with DPPH scavenging activity reaching 70.83%, as opposed to 61.67% in WFB, while maintaining similar moisture and lipid levels. Although CFB showed slightly lower protein content, the elevated mineral and phenolic compound levels contributed to its functional value. These findings indicate that downgraded chestnuts can be upcycled into gluten-free bakery products with improved functional characteristics. Given their antioxidant activity and mineral content, chestnut flour biscuits may serve as a valuable option for gluten-free diets, supporting circular economy principles and reducing food waste. Full article
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 283
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

17 pages, 1160 KiB  
Article
Enhanced Antioxidant and Antiproliferative Activities of Apple and Korean Green Chili Pepper Extracts Cultivated with Mineral Supplementation
by Ji-Sun Lim, Mi-Hee Yu, Dong Kyu Choi, Hae Won Kim, Seung-Hwan Park, Sin-Il Sin and Jong-Sang Kim
Foods 2025, 14(15), 2685; https://doi.org/10.3390/foods14152685 - 30 Jul 2025
Viewed by 213
Abstract
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts [...] Read more.
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts from both crops. Mineral-enriched cultivation significantly increased the total phenolic and flavonoid contents in both crops, which was accompanied by enhanced DPPH and ABTS radical scavenging activities. Moreover, the mineral-supplemented extracts of Korean green chili pepper activated the Nrf2 signaling pathway and upregulated downstream antioxidant enzymes, including heme oxygenase-1 (HO-1), γ-glutamylcysteine ligase (GCL), and glutathione peroxidase (GPx). Notably, the mineral-supplemented Korean green chili pepper extract significantly suppressed the proliferation of human colorectal cancer cells. These findings suggest that mineral supplementation during cultivation may improve the functional quality of apples and Korean green chili peppers, supporting their potential application in cancer prevention and complementary therapeutic strategies. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

23 pages, 1907 KiB  
Article
Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices
by Elena Coyago-Cruz, Gabriela Méndez, Ruth Escobar-Quiñonez, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 924; https://doi.org/10.3390/antiox14080924 - 29 Jul 2025
Viewed by 295
Abstract
The Amazon represents a key source of food biodiversity and is home to native fruits with high nutritional and functional potential, many of which remain largely unstudied. This research aimed to evaluate the presence of bioactive compounds, as well as the antioxidant and [...] Read more.
The Amazon represents a key source of food biodiversity and is home to native fruits with high nutritional and functional potential, many of which remain largely unstudied. This research aimed to evaluate the presence of bioactive compounds, as well as the antioxidant and antimicrobial activity of Miconia crenata, Grias neuberthii, Lacmellea oblongata, Pourouma cecprofiilia, and Annona edulis. Physical and chemical parameters, mineral content (atomic absorption), vitamin C, organic acid, carotenoids, chlorophylls, and phenols (liquid chromatography), antioxidant activity (ABTS, DPPH), and antimicrobial activity (against Candida albicans, Candida tropicalis, Escherichia coli, Staphylococcus aureus, and Streptococcus mutans) were determined. High concentrations of calcium, syringic acid, and antioxidant activity were found in the fruits of Miconia crenata; malic and caffeic acids in Grias neuberthii; citric acid, naringenin, and antioxidant activity in Lactuca oblongata; potassium, chlorogenic acid, and ferulic acid in Pourouma cecropiifolia; and tartaric acid and gallic acid in Annona edulis. Additionally, low antimicrobial activity was observed in M. crenata against E. coli (2.7 mg/mL), G. neuberthii against S. aureus (10.3 mg/mL), and L. oblongata against S. mutans (10.4 mg/mL), C. albicans (20.8 mg/mL), and C. tropicalis (20.8 mg/mL). The results confirm that these Amazonian fruits are a relevant source of functional bioactive compounds, highlighting their potential for use in the food, pharmaceutical, and biotechnology sectors. Full article
(This article belongs to the Special Issue Polyphenolic Antioxidants in Food)
Show Figures

Figure 1

24 pages, 1412 KiB  
Article
Arthrospira platensis var. toliarensis: A Local Sustainable Microalga for Food System Resilience
by Antonio Fidinirina Telesphore, Andreea Veronica Botezatu, Daniela Ionela Istrati, Bianca Furdui, Rodica Mihaela Dinica and Valérie Lalao Andriamanamisata Razafindratovo
Foods 2025, 14(15), 2634; https://doi.org/10.3390/foods14152634 - 27 Jul 2025
Viewed by 329
Abstract
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study [...] Read more.
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study assessed growth kinetics, physicochemical parameters, and composition during two contrasting seasons. Biomass increased 7.5-fold in 10 days, reaching a productivity of 7.8 ± 0.58 g/m2/day and a protein yield of 4.68 ± 0.35 g/m2/day. The hot-season harvest showed significantly higher protein content (65.1% vs. 44.6%), enriched in essential amino acids. On a dry matter basis, mineral profiling revealed high levels of sodium (2140 ± 35.4 mg/100 g), potassium (1530 ± 21.8 mg/100 g), calcium (968 ± 15.1 mg/100 g), phosphorus (815 ± 13.2 mg/100 g), magnesium (389.28 ± 6.4 mg/100 g), and iron (235 ± 9.1 mg/100 g), underscoring its value as a micronutrient-rich supplement. The hydroethanolic extract had the highest polyphenol content (4.67 g GAE/100 g of dry extract), while the hexanic extract exhibited the strongest antioxidant capacity (IC50 = 101.03 ± 1.37 µg/mL), indicating fat-soluble antioxidants. Aflatoxin levels (B1, B2, G1, and G2) remained below EU safety thresholds. Compared to soy and beef, this strain showed superior protein productivity and water-use efficiency. These findings confirm A. platensis var. toliarensis as a promising, ecologically sound alternative for improving food and nutrition security, and its local production can offer substantial benefits to smallholder livelihoods. Full article
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 320
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

17 pages, 285 KiB  
Article
Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity
by Pavlína Podloucká, Ivana Polišenská, Ondřej Jirsa and Kateřina Vaculová
Foods 2025, 14(15), 2578; https://doi.org/10.3390/foods14152578 - 23 Jul 2025
Viewed by 222
Abstract
Barley is a good source of dietary fibre, vitamins, and minerals. Moreover, it is a source of polyphenols, which recently have been studied for their antioxidant properties. Barley generally is not eaten in its raw form, and the necessary processing influences the polyphenol [...] Read more.
Barley is a good source of dietary fibre, vitamins, and minerals. Moreover, it is a source of polyphenols, which recently have been studied for their antioxidant properties. Barley generally is not eaten in its raw form, and the necessary processing influences the polyphenol content. This study evaluated the content of polyphenol compounds and antioxidant activity before and after thermal treatment typical for that carried out in households (i.e., boiling and subsequent microwave heating). Six genetic materials of hull-less barley were chosen for this study. The results showed that all tested barley genotypes were good sources of polyphenols. The studied thermal processes led to certain reductions in polyphenol content. The antioxidant activity of soluble phenolic compounds and the effects of heat treatment, as analysed by Trolox equivalent antioxidant activity (TEAC) and 2,2-diphenyl-1-picrylhydrazyl assay (DPPH) methods, differed. In the case of the DPPH method, the boiling and subsequent microwave heating indicated growth in antioxidant activity for almost all genotypes. When using the TEAC method, the results were not so clear, as the indicated activity both increased and declined. In the case of insoluble polyphenols, the antioxidant activity decreased for almost all genotypes regardless of the measurement method used. Full article
(This article belongs to the Section Food Nutrition)
29 pages, 1998 KiB  
Article
Optimizing the Extraction of Polyphenols from Different Edible Lichens Using Response Surface Methodology and the Determination of Their Mineral and Antibacterial Properties
by Kubra Ozkan, Hatice Bekiroglu, Nur Cebi, Fatih Bozkurt, Sevda Dere, Hilmi Ozdemir, Muhammet Arici, Salih Karasu and Osman Sagdic
Foods 2025, 14(15), 2562; https://doi.org/10.3390/foods14152562 - 22 Jul 2025
Viewed by 341
Abstract
This study employed response surface methodology for the first-time optimization of the ultrasound-assisted extraction (UAE) of the total phenolic content (TPC) and ABTS from edible lichens, including Evernia divaricata, Evernia prunastri, Pseudevernia furfuracea, Bryoria fuscescens, and Lobaria pulmonaria. [...] Read more.
This study employed response surface methodology for the first-time optimization of the ultrasound-assisted extraction (UAE) of the total phenolic content (TPC) and ABTS from edible lichens, including Evernia divaricata, Evernia prunastri, Pseudevernia furfuracea, Bryoria fuscescens, and Lobaria pulmonaria. Fourteen experimental points were generated using Design Expert Software, with the extraction temperature (25–40 °C), extraction time (5–20 min), and ethanol concentration (0–80%) as independent variables, and TPC and ABTS as dependent variables. The phenolic profile and mineral and antibacterial properties of the optimized lichen extracts were determined. Evernic and usnic acid were found in Evernia species. Atranorin was detected only in P. furfuracea. Fumarprotocetraric acid was found exclusively in B. fuscescens and was not detected in any of the other lichens. Calcium was found to have the highest mineral content in all the lichens, followed by potassium. L. pulmonaria, showing the lowest inhibition effect against all tested bacteria, while E. divaricata exhibited the most effective inhibition. Full article
Show Figures

Figure 1

20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 273
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 369
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 329
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 985
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 243
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

Back to TopTop