Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Cooking of the Barley
2.4. Extraction
2.5. Determination of Total Polyphenol Content
2.6. Determination of DPPH Scavenging Activity
2.7. Determination of Trolox Equivalent Antioxidant Activity
2.8. Data Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC)
3.2. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Antioxidant activity |
ABTS | 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt |
DPPH | 2,2-diphenyl-1-pycrylhydrazyl radical |
NMC | Nudimelanocrithon |
TEAC | Trolox equivalent antioxidant activity |
TPC | total polyphenol content |
References
- Borneo, R.; León, A.E. Whole grain cereals: Functional components and health benefits. Food Funct. 2012, 3, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Luthria, D.; Fuerst, E.P.; Kiszonas, A.M.; Yu, L.; Morris, C.F. Effect of processing on phenolic composition of dough and bread fractions made from refined and whole wheat flour of three wheat varieties. J. Agric. Food Chem. 2014, 62, 10431–10436. [Google Scholar] [CrossRef] [PubMed]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.S.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
- Beta, T.; Nam, S.; Dexter, J.E.; Sapirstein, H.D. Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chem. 2005, 82, 390–393. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 2007, 101, 1151–1157. [Google Scholar] [CrossRef]
- Sharma, P.; Goudar, G.; Longvah, T.; Gour, V.S.; Kothari, S.L.; Wani, I.A. Fate of polyphenols and antioxidant activity of barley during processing. Food Rev. Int. 2022, 38, 163–198. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, T.; Liu, R.H. Bioactive compounds of highland barley and their health benefits. J. Cereal Sci. 2022, 103, 103366. [Google Scholar] [CrossRef]
- Gong, L. Chapter 4—Barley. In Bioactive Factors and Processing Technology for Cereal Foods; Wang, J., Sun, B., Tsao, R., Eds.; Springer: Singapore, 2019; pp. 55–64. [Google Scholar]
- Sullivan, P.; Arendt, E.; Gallagher, E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 2013, 29, 124–134. [Google Scholar] [CrossRef]
- Duodu, K.G. Chapter 3—Effects of processing on antioxidant phenolics of cereal and legume grains. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 31–54. [Google Scholar]
- Van Hung, P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Ondrejovič, M.; Šilhár, S. Antioxidant activity of milling fractions of selected cereals. Nova Biotechnol. Chim. 2012, 11, 45–56. [Google Scholar] [CrossRef]
- Zieliński, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Okarter, N.; Liu, C.S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 119, 249–257. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic content and antioxidant properties of bran in 51 wheat cultivars. Cereal Chem. 2008, 85, 544–549. [Google Scholar] [CrossRef]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Nayeem, S.; Sundararajan, S.; Ashok, A.K.; Abusaliya, A.; Ramalingam, S. Effects of cooking on phytochemical and antioxidant properties of pigmented and non-pigmented rare Indian rice landraces. Biocatal. Agric. Biotechnol. 2021, 32, 101928. [Google Scholar] [CrossRef]
- Saikia, S.; Dutta, H.; Saikia, D.; Mahanta, C.L. Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Rev. Int. 2012, 46, 334–340. [Google Scholar] [CrossRef]
- Finocchiaro, F.; Ferrari, B.; Gianinetti, A.; Dall’Asta, C.; Galaverna, G.; Scazzina, F.; Pellegrini, N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol. Nutr. Food Res. 2007, 51, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; McClung, A.; Chen, M.H. Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014, 159, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Massaretto, I.L.; Alves, M.F.M.; de Mira, N.V.M.; Carmona, A.K.; Marquez, U.M.L. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. J. Cereal Sci. 2011, 54, 236–240. [Google Scholar] [CrossRef]
- Zaupa, M.; Calani, L.; Del Rio, D.; Brighenti, F.; Pellegrini, N. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem. 2015, 187, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Boskov Hansen, H.; Andreasen, M.; Nielsen, M.; Larsen, L.; Knudsen, B.K.; Meyer, A.; Christensen, L.; Hansen, Å. Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur. Food Res. Technol. 2002, 214, 33–42. [Google Scholar] [CrossRef]
- Hithamani, G.; Srinivasan, K. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chem. 2014, 164, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, A.; Naczk, M.; Shahidi, F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012, 133, 1–9. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef] [PubMed]
- Harakotr, B.; Suriharn, B.; Tangwongchai, R.; Scott, M.P.; Lertrat, K. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chem. 2014, 164, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pickard, M.D.; Beta, T. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 2007, 104, 1080–1086. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Bryngelsson, S.; Dimberg, L.H.; Kamal-Eldin, A. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J. Agric. Food Chem. 2002, 50, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Zadernowskl, R.; Nowak-Polakowska, H.; Rashed, A.A. The influence of heat treatment on the activity of lipo-and hydrophilic components of oat grain. J. Food Process. Preserv. 1999, 23, 177–191. [Google Scholar] [CrossRef]
- Gallegos-Infante, J.A.; Rocha-Guzman, N.E.; Gonzalez-Laredo, R.F.; Pulido-Alonso, J. Effect of processing on the antioxidant properties of extracts from Mexican barley (Hordeum vulgare) cultivar. Food Chem. 2010, 119, 903–906. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S.; Singh, B. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 2012, 131, 1406–1413. [Google Scholar] [CrossRef]
- Zielinski, H.; Kozlowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food Sci. Emerg. Technol. 2001, 2, 159–169. [Google Scholar] [CrossRef]
- N’Dri, D.; Mazzeo, T.; Zaupa, M.; Ferracane, R.; Fogliano, V.; Pellegrini, N. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J. Sci. Food Agric. 2013, 93, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Jacobs, D.; Marquart, L. Grain processing and nutrition. Crit. Rev. Food Sci. Nutr. 2000, 40, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.S.M. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Kadiri, O. A review on the status of the phenolic compounds and antioxidant capacity of the flour: Effects of cereal processing. Int. J. Food Prop. 2017, 20, S798–S809. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Andersson, A.A.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Bhatty, R.S. The potential of hull-less barley. Cereal Chem. 1999, 76, 589–599. [Google Scholar] [CrossRef]
- Podloucká, P.; Polišenská, I.; Jirsa, O. Effect of the extraction solvent and method on the determination of the total polyphenol content in different common buckwheat (Fagopyrum esculentum Moench) varieties. Food Nutr. Res. 2025, 69, 9834. [Google Scholar] [CrossRef]
- Singleton, V.L.; Vernon, L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 8, 25–30. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Choo, T.M.; Dhillon, S.; Rabalski, I. Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem. 2012, 89, 198–204. [Google Scholar] [CrossRef]
- Lee, N.Y.; Kim, Y.K.; Choi, I.; Cho, S.K.; Hyun, J.N.; Choi, J.S.; Park, K.H.; Kim, K.J.; Lee, M.J. Biological activity of barley (Hordeum vulgare L.) and barley by-product extracts. Food Sci. Biotechnol. 2010, 19, 785–791. [Google Scholar] [CrossRef]
- Kroon, P.A.; Faulds, C.B.; Ryden, P.; Robertson, J.A.; Williamson, G. Release of covalently bound ferulic acid from fiber in the human colon. J. Agric. Food Chem. 1997, 45, 661–667. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Kroon, P.A.; Williamson, G.; Garcia-Conesa, M.T. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic. Biol. Med. 2001, 31, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Vukadinović, J.; Srdić, J.; Tosti, T.; Dragičević, V.; Kravić, N.; Drinić, S.M.; Milojković-Opsenica, D. Alteration in phytochemicals from sweet maize in response to domestic cooking and frozen storage. J. Food Compos. Anal. 2022, 114, 104637. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Sawicka, B.; Krochmal-Marczak, B.; Sawicka, B. The influence of cooking on the antioxidant properties and polyphenol content in buckwheat, barley and millet groats and the transfer of the compounds to the water. Potravin. Slovak J. Food Sci. 2019, 13, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Surh, J.; Koh, E. Effects of four different cooking methods on anthocyanins, total phenolics and antioxidant activity of black rice. J. Sci. Food Agric. 2014, 94, 3296–3304. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhu, L.; Zhang, H.; Bi, S.; Wu, G.; Qi, X.; Zhang, H.; Wang, L.; Qian, H.; Zhou, L. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice. J. Cereal Sci. 2021, 97, 103127. [Google Scholar] [CrossRef]
- Melini, V.; Panfili, G.; Fratianni, A.; Acquistucci, R. Bioactive compounds in rice on Italian market: Pigmented varieties as a source of carotenoids, total phenolic compounds and anthocyanins, before and after cooking. Food Chem. 2019, 277, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Towo, E.E.; Svanberg, U.; Ndossi, G.D. Effect of grain pre-treatment on different extractable phenolic groups in cereals and legumes commonly consumed in Tanzania. J. Sci. Food Agric. 2003, 83, 980–986. [Google Scholar] [CrossRef]
- Brend, Y.; Galili, L.; Badani, H.; Hovav, R.; Galili, S. Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food Nutr. Sci. 2012, 3, 1150–1155. [Google Scholar] [CrossRef]
- Morelló, J.R.; Motilva, M.J.; Tovar, M.J.; Romero, M.P. Changes in commercial virgin olive oil (cv. Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int. 2011, 44, 235–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.; Li, W.; Huang, K.; Li, S.; Cao, H.; Guan, X. Microwaving released more polyphenols from black quinoa grains with hypoglycemic effects compared with traditional cooking methods. J. Sci. Food Agric. 2022, 102, 5948–5956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, H.; Li, J.; Pei, Y.; Liang, Y. Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT—Food Sci. Technol. 2010, 43, 181–185. [Google Scholar] [CrossRef]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Gong, J.D.B.; Lu, M.; Lu, M.Y.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D.T. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J. Cereal Sci. 2018, 81, 69–75. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Martínez, M.; Motilva, M.J.; de Las Hazas, M.C.L.; Romero, M.P.; Vaculova, K.; Ludwig, I.A. Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chem. 2018, 245, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Drożdżyńska, A.; Gujska, E. Effect of boiling in water of barley and buckwheat groats on the antioxidant properties and dietary fiber composition. Plant Foods Hum. Nutr. 2014, 69, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cai, W.; Xu, B. From rice bag to table: Fate of phenolic chemical compositions and antioxidant activities in waxy and non-waxy black rice during home cooking. Food Chem. 2016, 191, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ti, H.; Zhang, R.; Li, Q.; Wei, Z.; Zhang, M. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015, 76, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, D.; Szawara-Nowak, D.; Zielinski, H. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J. Agric. Food Chem. 2007, 55, 6124–6131. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Michalska, A.; Piskuła, M.K.; Kozłowska, H. Antioxidants in thermally treated buckwheat groats. Mol. Nutr. Food Res. 2006, 50, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Fracassetti, D.; Pozzoli, C.; Vitalini, S.; Tirelli, A.; Iriti, M. Impact of cooking on bioactive compounds and antioxidant activity of pigmented rice cultivars. Foods 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Omwamba, M.; Hu, Q. Antioxidant activity in barley (Hordeum vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology. J. Food Sci. 2010, 75, C66–C73. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Monreal, A.M.; García-Diz, L.; Martínez-Tomé, M.; Mariscal, M.M.M.A.; Murcia, M.A. Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci. 2009, 74, H97–H103. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef] [PubMed]
Phenolic Group | Genotype | TPC (mg GAE/g DM) | ||
---|---|---|---|---|
Raw | Boiled | Boiled and Microwaved | ||
Soluble | ||||
AF Cesar | 2.23 ± 0.04 bA | 2.03 ± 0.08 bA | 2.03 ± 0.07 bcA | |
AF Lucius | 2.52 ± 0.05 aA | 2.55 ± 0.04 aA | 2.42 ± 0.07 aA | |
NMC | 2.04 ± 0.02 cAB | 2.13 ± 0.12 bA | 1.85 ± 0.07 cB | |
KM 2975 | 2.19 ± 0.02 bA | 2.10 ± 0.09 bA | 1.97 ± 0.06 bcA | |
KM 3189 | 2.22 ± 0.02 bA | 2.13 ± 0.07 bA | 2.00 ± 0.14 bcA | |
KM 2551 | 2.25 ± 0.02 bA | 2.14 ± 0.09 bA | 2.08 ± 0.08 bA | |
Mean | 2.24 ± 0.14 A | 2.18 ± 0.17 B | 2.06 ± 0.17 C | |
Insoluble | ||||
AF Cesar | 8.51 ± 0.23 bA | 7.72 ± 0.08 cAB | 7.63 ± 0.24 bB | |
AF Lucius | 8.66 ± 0.42 bA | 7.74 ± 0.25 cB | 7.40 ± 0.10 bB | |
NMC | 11.51 ± 0.24 aA | 10.53 ± 0.41 aB | 9.35 ± 0.69 aC | |
KM 2975 | 8.69 ± 0.24 bA | 8.53 ± 0.22 bA | 7.58 ± 0.40 bB | |
KM 3189 | 8.20 ± 0.24 bA | 8.15 ± 0.26 bcA | 7.42 ± 0.25 bA | |
KM 2551 | 8.64 ± 0.18 bA | 8.20 ± 0.40 bcAB | 7.72 ± 0.28 bB | |
Mean | 9.04 ± 1.12 A | 8.48 ± 0.96 B | 7.85 ± 0.68 C | |
Total | ||||
AF Cesar | 10.74 ± 0.25 bcA | 9.75 ± 0.01 bB | 9.66 ± 0.26 bB | |
AF Lucius | 11.18 ± 0.45 bA | 10.29 ± 0.27 bAB | 9.82 ± 0.09 bB | |
NMC | 13.55 ± 0.23 aA | 12.66 ± 0.52 aA | 11.20 ± 0.72 aB | |
KM 2975 | 10.88 ± 0.25 bcA | 10.63 ± 0.29 bA | 9.55 ± 0.42 bB | |
KM 3189 | 10.42 ± 0.26 cA | 10.28 ± 0.26 bAB | 9.42 ± 0.34 bB | |
KM 2551 | 10.89 ± 0.20 bcA | 10.34 ± 0.43 bAB | 9.80 ± 0.31 bB | |
Mean | 11.28 ± 1.04 A | 10.66 ± 0.93 B | 9.91 ± 0.59 C |
Genotype | DPPH | TEAC | ||||
---|---|---|---|---|---|---|
Raw | Boiled | Boiled and Microwaved | Raw | Boiled | Boiled and Microwaved | |
Soluble | ||||||
AF Cesar | 3.55 ± 0.03 bA | 3.26 ± 0.12 dA | 3.45 ± 0.14 cA | 6.76 ± 0.16 bA | 5.53 ± 0.27 bB | 6.05 ± 0.17 bB |
AF Lucius | 4.02 ± 0.04 aA | 4.12 ± 0.13 aA | 4.28 ± 0.07 aA | 7.82 ± 0.10 aA | 6.92 ± 0.26 aB | 7.09 ± 0.14 aB |
NMC | 3.23 ± 0.07 cB | 3.73 ± 0.10 bcA | 3.59 ± 0.11 bcA | 5.45 ± 0.11 dB | 5.89 ± 0.18 bAB | 6.12 ± 0.16 bA |
KM 2975 | 3.48 ± 0.03 bA | 3.82 ± 0.11 abA | 3.69 ± 0.06 bcA | 5.98 ± 0.19 cA | 6.04 ± 0.27 bA | 5.86 ± 0.25 bA |
KM 3189 | 3.29 ± 0.04 cB | 3.40 ± 0.18 cdAB | 3.72 ± 0.21 bcA | 6.01 ± 0.03 cA | 5.93 ± 0.04 bA | 6.05 ± 0.15 bA |
KM 2551 | 3.50 ± 0.04 bB | 3.78 ± 0.14 abcAB | 4.00 ± 0.25 abA | 6.04 ± 0.09 cA | 5.98 ± 0.05 bA | 6.09 ± 0.30 bA |
Mean | 3.51 ± 0.25 A | 3.68 ± 0.28 B | 3.79 ± 0.27 C | 6.34 ± 0.76 A | 6.05 ± 0.42 C | 6.21 ± 0.40 B |
Insoluble | ||||||
AF Cesar | 6.50 ± 0.19 bcA | 4.43 ± 0.43 bB | 4.69 ± 0.09 cB | 51.86 ± 2.97 aAB | 52.88 ± 1.99 aA | 46.87 ± 0.56 bB |
AF Lucius | 6.72 ± 0.29 bA | 4.53 ± 0.28 bB | 4.84 ± 0.13 cB | 51.02 ± 2.83 aAB | 52.64 ± 0.81 aA | 46.74 ± 1.07 bB |
NMC | 7.76 ± 0.65 aA | 6.99 ± 0.27 aA | 6.71 ± 0.64 aA | 55.72 ± 1.09 aA | 55.98 ± 2.67 aA | 52.29 ± 1.28 aA |
KM 2975 | 5.79 ± 0.24 cdA | 6.23 ± 0.32 aA | 5.37 ± 0.30 bcA | 51.29 ± 2.33 aA | 52.97 ± 2.13 aA | 46.38 ± 0.66 bB |
KM 3189 | 5.55 ± 0.37 dA | 6.18 ± 0.40 aA | 5.53 ± 0.43 bcA | 51.52 ± 1.29 aA | 53.05 ± 1.76 aA | 46.88 ± 1.10 bB |
KM 2551 | 5.37 ± 0.08 dA | 6.22 ± 0.48 aA | 5.97 ± 0.45 abA | 51.45 ± 0.99 aAB | 53.24 ± 0.99 aA | 47.53 ± 1.67 bB |
Mean | 6.28 ± 0.82 A | 5.76 ± 0.95 B | 5.52 ± 0.68 B | 52.14 ± 1.62 B | 53.46 ± 1.14 A | 47.78 ± 2.04 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podloucká, P.; Polišenská, I.; Jirsa, O.; Vaculová, K. Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity. Foods 2025, 14, 2578. https://doi.org/10.3390/foods14152578
Podloucká P, Polišenská I, Jirsa O, Vaculová K. Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity. Foods. 2025; 14(15):2578. https://doi.org/10.3390/foods14152578
Chicago/Turabian StylePodloucká, Pavlína, Ivana Polišenská, Ondřej Jirsa, and Kateřina Vaculová. 2025. "Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity" Foods 14, no. 15: 2578. https://doi.org/10.3390/foods14152578
APA StylePodloucká, P., Polišenská, I., Jirsa, O., & Vaculová, K. (2025). Effect of Domestic Cooking of Hull-Less Barley Genotypes on Total Polyphenol Content and Antioxidant Activity. Foods, 14(15), 2578. https://doi.org/10.3390/foods14152578