Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,151)

Search Parameters:
Keywords = phase match

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 7440 KB  
Review
Integrating Speech Recognition into Intelligent Information Systems: From Statistical Models to Deep Learning
by Chaoji Wu, Yi Pan, Haipan Wu and Lei Ning
Informatics 2025, 12(4), 107; https://doi.org/10.3390/informatics12040107 (registering DOI) - 4 Oct 2025
Abstract
Automatic speech recognition (ASR) has advanced rapidly, evolving from early template-matching systems to modern deep learning frameworks. This review systematically traces ASR’s technological evolution across four phases: the template-based era, statistical modeling approaches, the deep learning revolution, and the emergence of large-scale models [...] Read more.
Automatic speech recognition (ASR) has advanced rapidly, evolving from early template-matching systems to modern deep learning frameworks. This review systematically traces ASR’s technological evolution across four phases: the template-based era, statistical modeling approaches, the deep learning revolution, and the emergence of large-scale models under diverse learning paradigms. We analyze core technologies such as hidden Markov models (HMMs), Gaussian mixture models (GMMs), recurrent neural networks (RNNs), and recent architectures including Transformer-based models and Wav2Vec 2.0. Beyond algorithmic development, we examine how ASR integrates into intelligent information systems, analyzing real-world applications in healthcare, education, smart homes, enterprise systems, and automotive domains with attention to deployment considerations and system design. We also address persistent challenges—noise robustness, low-resource adaptation, and deployment efficiency—while exploring emerging solutions such as multimodal fusion, privacy-preserving modeling, and lightweight architectures. Finally, we outline future research directions to guide the development of robust, scalable, and intelligent ASR systems for complex, evolving environments. Full article
(This article belongs to the Section Machine Learning)
18 pages, 7440 KB  
Article
The Impact of Dual-Wavefront Propagation of Electromagnetic Waves in Bio-Tissues on Imaging and In-Body Communications
by Lei Guo, Kamel Sultan, Fei Xue and Amin Abbosh
Biosensors 2025, 15(10), 667; https://doi.org/10.3390/bios15100667 - 3 Oct 2025
Abstract
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, [...] Read more.
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, they exhibit two distinct wavefronts: the phase wavefront and the amplitude wavefront, which are generally oriented at different angles. The impact of that on imaging and in-body communications is investigated and validated through comprehensive analysis and full-wave EM simulations. Additionally, the impact of a matching medium, commonly used to reduce antenna–skin interface reflections in medical EM applications, on the direction of EM wavefronts, travel time, phase changes, and attenuation is analyzed and quantified. The results show that the Fermat principle of least travel time, often used to estimate EM wave travel time for localization in medical imaging and wireless endoscopy, is only accurate when the loss tangent or dissipation factor of both the matching medium and tissues is very low. Otherwise, the results will be inaccurate, and the dual wavefronts should be considered. The presented analysis and results provide guidance on EM wave travel time and the direction of phase and amplitude wavefronts. This information is valuable for developing reliable processing algorithms for sensing, imaging, and in-body communication. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

25 pages, 12510 KB  
Article
Computer Vision-Based Optical Odometry Sensors: A Comparative Study of Classical Tracking Methods for Non-Contact Surface Measurement
by Ignas Andrijauskas, Marius Šumanas, Andrius Dzedzickis, Wojciech Tanaś and Vytautas Bučinskas
Sensors 2025, 25(19), 6051; https://doi.org/10.3390/s25196051 - 1 Oct 2025
Abstract
This article presents a principled framework for selecting and tuning classical computer vision algorithms in the context of optical displacement sensing. By isolating key factors that affect algorithm behavior—such as feed window size and motion step size—the study seeks to move beyond intuition-based [...] Read more.
This article presents a principled framework for selecting and tuning classical computer vision algorithms in the context of optical displacement sensing. By isolating key factors that affect algorithm behavior—such as feed window size and motion step size—the study seeks to move beyond intuition-based practices and provide rigorous, repeatable performance evaluations. Computer vision-based optical odometry sensors offer non-contact, high-precision measurement capabilities essential for modern metrology and robotics applications. This paper presents a systematic comparative analysis of three classical tracking algorithms—phase correlation, template matching, and optical flow—for 2D surface displacement measurement using synthetic image sequences with subpixel-accurate ground truth. A virtual camera system generates controlled test conditions using a multi-circle trajectory pattern, enabling systematic evaluation of tracking performance using 400 × 400 and 200 × 200 pixel feed windows. The systematic characterization enables informed algorithm selection based on specific application requirements rather than empirical trial-and-error approaches. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 1841 KB  
Article
A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates
by Hang Zheng, Shu Li and Wei Han
Molecules 2025, 30(19), 3946; https://doi.org/10.3390/molecules30193946 - 1 Oct 2025
Abstract
Elucidating amyloid formation inside biomolecular condensates requires models that resolve (i) local, chemistry specific contacts controlling β registry and (ii) mesoscale phase behavior and cluster coalescence on microsecond timescales—capabilities beyond single resolution models. We present a hybrid united atom/coarse grained (UA–CG) force field [...] Read more.
Elucidating amyloid formation inside biomolecular condensates requires models that resolve (i) local, chemistry specific contacts controlling β registry and (ii) mesoscale phase behavior and cluster coalescence on microsecond timescales—capabilities beyond single resolution models. We present a hybrid united atom/coarse grained (UA–CG) force field coupling a PACE UA peptide model with the MARTINI CG framework. Cross resolution nonbonded parameters are first optimized against all atom side chain potentials of mean force to balance the relative strength between different types of interactions and then refined through universal parameter scaling by matching radius of gyration distributions for specific systems using. We applied this approach to simulate a recently reported model system comprising the LVFFAR9 peptide that can co-assemble into amyloid fibrils via liquid–liquid phase separation. Our ten-microsecond simulations reveal rapid droplet formation populated by micelle like nanostructures with its inner core composed of LVFF clusters. The nanostructures can further fuse but the fusion is reaction-limited due to an electrostatic coalescence barrier. β structures emerge once clusters exceed ~10 peptides, and the LVFFAR9 fraction modulates amyloid polymorphism, reversing parallel versus antiparallel registry at lower LVFFAR9. These detailed insights generated from long simulations highlight the promise of our hybrid UA–CG strategy in investigating the molecular mechanism of condensate aging. Full article
(This article belongs to the Special Issue Development of Computational Approaches in Chemical Biology)
21 pages, 2417 KB  
Article
TrailMap: Pheromone-Based Adaptive Peer Matching for Sustainable Online Support Communities
by Harold Ngabo-Woods, Larisa Dunai, Isabel Seguí Verdú and Dinu Turcanu
Biomimetics 2025, 10(10), 658; https://doi.org/10.3390/biomimetics10100658 - 1 Oct 2025
Abstract
Online peer support platforms are vital, scalable resources for mental health, yet their effectiveness is frequently undermined by inefficient user matching, severe participation inequality, and subsequent “super-helper” burnout. This study introduces TrailMap, a novel peer-matching algorithm inspired by the decentralised foraging strategies of [...] Read more.
Online peer support platforms are vital, scalable resources for mental health, yet their effectiveness is frequently undermined by inefficient user matching, severe participation inequality, and subsequent “super-helper” burnout. This study introduces TrailMap, a novel peer-matching algorithm inspired by the decentralised foraging strategies of ant colonies. By treating user interactions as paths that gain or lose “pheromone” based on helpfulness ratings, the system enables the community to collectively and adaptively identify its most effective helpers. A two-phase validation study was conducted. First, an agent-based simulation demonstrated that TrailMap reduced the mean time to a helpful response by over 70% and improved workload equity compared to random routing. Second, a four-week randomised controlled pilot study with human participants confirmed these gains, showing a 76% reduction in median wait time and significantly higher perceived helpfulness ratings. The findings suggest that by balancing the workload, TrailMap enhances not only the efficiency but also the socio-technical sustainability of online support communities. TrailMap provides a practical, nature-inspired method for building more resilient and equitable online support communities, enhancing access to effective mental health support. Full article
Show Figures

Figure 1

43 pages, 5662 KB  
Article
Coordinating V2V Energy Sharing for Electric Fleets via Multi-Granularity Modeling and Dynamic Spatiotemporal Matching
by Zhaonian Ye, Qike Han, Kai Han, Yongzhen Wang, Changlu Zhao, Haoran Yang and Jun Du
Sustainability 2025, 17(19), 8783; https://doi.org/10.3390/su17198783 - 30 Sep 2025
Abstract
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This [...] Read more.
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This paper proposes a hierarchical optimization framework to minimize total fleet operational costs, incorporating a comprehensive analysis that includes battery degradation. The core innovation of the framework lies in coupling high-level path planning with low-level real-time speed control. First, a high-fidelity energy consumption surrogate model is constructed through model predictive control simulations, incorporating vehicle dynamics and signal phase and timing information. Second, the spatiotemporal longest common subsequence algorithm is employed to match the spatio-temporal trajectories of energy-provider and energy-consumer vehicles. A battery aging model is integrated to quantify the long-term costs associated with different operational strategies. Finally, a multi-objective particle swarm optimization algorithm, integrated with MPC, co-optimizes the rendezvous paths and speed profiles. In a case study based on a logistics network, simulation results demonstrate that, compared to the conventional station-based charging mode, the proposed V2V framework reduces total fleet operational costs by a net 12.5% and total energy consumption by 17.4% while increasing the energy utilization efficiency of EV-Ps by 21.4%. This net saving is achieved even though the V2V strategy incurs a marginal increase in battery aging costs, which is overwhelmingly offset by substantial savings in logistical efficiency. This study provides an efficient and economical solution for the dynamic energy management of electric fleets under realistic traffic conditions, contributing to a more sustainable and resilient urban logistics ecosystem. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

17 pages, 7150 KB  
Article
Dual Halbach Array Compact Linear Actuator with Thrust Characteristics Part I Simulation Result
by Jumpei Kuroda, Ryutaro Ono, Takumu Takayama, Shinobu Kasamatsu, Ikkei Kobayashi, Daigo Uchino, Kazuki Ogawa, Taro Kato, Keigo Ikeda, Ayato Endo, Hideaki Kato and Takayoshi Narita
Actuators 2025, 14(10), 476; https://doi.org/10.3390/act14100476 - 28 Sep 2025
Abstract
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by [...] Read more.
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by the engine. A typical engine is operated with a single cam profile; depending on the engine rotation, there are areas where the cam profiles do not match, resulting in a poor engine performance. An intake and exhaust system with an actuator can solve this problem. In a previous study on this system, the geometry and processing during manufacturing were complex. Therefore, in response, a linear actuator operated by Lorentz force with a coil as the mover was designed in this study. Through an electromagnetic field analysis using the finite element method, a three-phase alternating current was applied to the coil, assuming that it would be used as a power source for a general inverter. Consequently, the thrust obtained in the valve-actuation direction was 56.7 N, indicating improved axial thrust over the conventional model. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

17 pages, 7052 KB  
Article
Identification Method for Wideband Oscillation Parameters Caused by Grid-Forming Renewable Energy Sources Based on Multiple Matching Synchrosqueezing Transformation
by Ping Xiong, Yu Sun, Lie Li, Yifan Zhao, Xiaoqian Zhu, Shunfan He and Ming Zhang
Energies 2025, 18(19), 5123; https://doi.org/10.3390/en18195123 - 26 Sep 2025
Abstract
The oscillation problem has emerged as one of the critical challenges confronting emerging power systems, particularly with the increasing penetration of grid-forming renewable energy sources. This trend can lead to the coexistence of multiple oscillation modes across a wide frequency range. To enhance [...] Read more.
The oscillation problem has emerged as one of the critical challenges confronting emerging power systems, particularly with the increasing penetration of grid-forming renewable energy sources. This trend can lead to the coexistence of multiple oscillation modes across a wide frequency range. To enhance the safety and stability of power systems, this paper proposes a wideband oscillation parameter identification method based on the multiple matching synchrosqueezing transform (MMSST), addressing the limitations of traditional time–frequency analysis techniques in accurately separating and extracting oscillation components during wideband parameter identification. The method first applies MMSST to decompose the measured oscillation signal into a set of intrinsic mode functions (IMFs). Subsequently, the Hilbert transform is applied to each IMF to extract the instantaneous frequency, amplitude, and initial phase, thereby achieving precise parameter identification of the oscillation signal. The validation study results demonstrate that the MMSST algorithm outperforms the empirical mode decomposition (EMD) and variational mode decomposition (VMD) algorithms in accurately extracting individual oscillation components and estimating their dynamic characteristics. Additionally, the proposed method achieves superior performance in terms of both accuracy and robustness when compared to the EMD and VMD algorithms. Full article
(This article belongs to the Special Issue Grid-Forming Converters in Power Systems)
Show Figures

Figure 1

15 pages, 2647 KB  
Article
6FDA-Based Co-Polyimide Membranes Incorporating Modulated MOF-808s for Olefin/Paraffin Gas Separations
by Harun Kulak, Lore Hannes and Ivo F. J. Vankelecom
Membranes 2025, 15(10), 290; https://doi.org/10.3390/membranes15100290 - 25 Sep 2025
Abstract
MOF-808 was synthesized using different (perfluoro)carboxylic acid modulators, including acetic acid (AA), butyric acid (BA), trifluoroacetic acid (TFAA) and heptafluorobutyric acid (HFBA). These samples were incorporated into co-polyimide 6FDA-DAM:DABA (6FDD), and the performance of the resulting MMMs was assessed for C2 and [...] Read more.
MOF-808 was synthesized using different (perfluoro)carboxylic acid modulators, including acetic acid (AA), butyric acid (BA), trifluoroacetic acid (TFAA) and heptafluorobutyric acid (HFBA). These samples were incorporated into co-polyimide 6FDA-DAM:DABA (6FDD), and the performance of the resulting MMMs was assessed for C2 and C3 olefin/paraffin separation. Enhanced permeability was observed for both C2H4/C2H6 and C3H6/C3H8 mixtures thanks to the introduced porosity upon filler incorporation in all cases. Due to the large pore size of MOF-808, diffusion-selective permeation through the polymer phase of the MMMs determined the eventual selectivity for C2 gases, leading to separation factors similar to that of the unfilled 6FDD membrane. For C3H6/C3H8 separation, the incorporation of fluorinated MOFs significantly improved separation performance, unlike their non-fluorinated counterparts. The unfilled 6FDD membrane exhibited a C3H6/C3H8 separation factor of 7.4 with a C3H6 permeability of 22 Barrer, while the incorporation of MOF-808-TFAA and MOF-808-HFBA led to C3H6/C3H8 separation factors of 13.1 and 13.5 with corresponding improved C3H6 permeabilities of 42 Barrer and 33 Barrer, respectively. Considering that these MMMs showed C3H6 permeabilities similar to those of MMMs containing their non-fluorinated MOF counterparts that exhibited no enhancement in membrane selectivity, the improved C3H6/C3H8 separation factor was attributed to the preferential adsorption of C3H8 over C3H6 on the fluorinated MOFs, acting as a trap for C3H8 and reducing its diffusivity. These results highlight the significance of matching the permeation characteristics of the selected polymer-filler pair on MMM performance for different gas pairs. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

29 pages, 1758 KB  
Article
Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure
by Elias Chalwatzis, Peng Lan and Frank Schönberger
Polymers 2025, 17(19), 2596; https://doi.org/10.3390/polym17192596 - 25 Sep 2025
Abstract
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). [...] Read more.
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). To investigate this, 17 epoxy formulations were prepared, including the commonly used diglycidyl ether of bisphenol A (DGEBA) and two custom-synthesized diepoxides: TME4, which contains rigid aromatic ester linkages with a C4 aliphatic spacer, and LCE-DP, featuring rigid imine bonds. Thermal conductivity was measured using four techniques: laser flash analysis (LFA), modified transient plane source (MTPS), time-domain thermoreflectance (TDTR), and displacement thermo-optic phase spectroscopy (D-TOPS). Additionally, small-angle and wide-angle X-ray scattering (SAXS/WAXS) were performed to detect crystalline or liquid crystalline domains. All formulations exhibited TC values ranging from 0.13 to 0.32 W/(m·K). The TME4–DDS systems, previously reported to be near 1 W/(m·K), consistently measured between 0.26 and 0.30 W/(m·K). Thus, under our synthesis and curing conditions, the elevated TC reported in prior studies was not reproduced, and no strong evidence of crystallinity was observed; indications of local ordering did not translate into higher conductivity. Variations in TC among methods often matched or exceeded the gains attributed to mesophase formation. More broadly, evidence for crystallinity in epoxy thermosets appears weak, consistent with the notion that crosslinking suppresses long-range ordering. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 3905 KB  
Article
4 × 4 Active Antenna Array with Digital Phase Shifting for WiFi 6E Applications
by Wen-Piao Lin and Chang-Yang Lin
Electronics 2025, 14(19), 3772; https://doi.org/10.3390/electronics14193772 - 24 Sep 2025
Viewed by 105
Abstract
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving [...] Read more.
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving a resonant frequency of 5.96 GHz with a measured return loss of −17.5 dB and stable broadside radiation. Building on this element, a corporate-fed 4 × 4 array was implemented on an FR4 substrate, incorporating stepped-impedance transmission lines and λ/4 transformers to ensure equal power division and impedance matching across all ports. A 4-bit digital phase shifter, controlled by an ATmega328p microcontroller, was integrated to enable electronic beam steering. Simulated results demonstrated accurate beam control within ±28°, with directional gains above 13 dBi and minimal degradation compared to the broadside case. Over-the-air measurements validated these findings, showing main lobe steering at 0°, ±15°, +33° and −30° with peak gains between 7.8 and 11.5 dBi. The proposed design demonstrates a cost-effective and practical solution for Wi-Fi 6E phased array antennas, offering enhanced beamforming, improved spatial coverage, and reliable performance in next-generation wireless networks. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

14 pages, 1654 KB  
Article
Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS
by Hyebin Choi, Jisook Yim, Jiwon Yun, Jong Kwon Lee, Keun Ju Kim, Minjeong Nam, Myung Hyun Nam, Yunjung Cho and Seung Gyu Yun
Molecules 2025, 30(19), 3847; https://doi.org/10.3390/molecules30193847 - 23 Sep 2025
Viewed by 135
Abstract
Plasma-free metanephrines are the most sensitive and specific biochemical markers for diagnosing catecholamine-secreting tumors, such as pheochromocytoma and paraganglioma. In this study, we developed and validated a liquid chromatography–tandem mass spectrometry method for quantifying metanephrine and normetanephrine in human plasma, using solid-phase extraction [...] Read more.
Plasma-free metanephrines are the most sensitive and specific biochemical markers for diagnosing catecholamine-secreting tumors, such as pheochromocytoma and paraganglioma. In this study, we developed and validated a liquid chromatography–tandem mass spectrometry method for quantifying metanephrine and normetanephrine in human plasma, using solid-phase extraction with a weak cation-exchange mechanism. Validation was performed according to the FDA Bioanalytical Method Validation Guidance and CLSI guideline C62-A. The method showed excellent linearity over concentration ranges of 0.11–13.92 nmol/L for metanephrine and 0.14–26.43 nmol/L for normetanephrine, with correlation coefficients exceeding 0.999. The accuracy, precision, and lower limit of quantification met the acceptance criteria of the study. Matrix effect evaluation revealed a process efficiency of 121% for metanephrine at the lowest concentration, slightly exceeding the acceptable range of 100 ± 15%. This was likely because of matrix-induced ion enhancement or variability in extraction efficiency. However, all other tested concentrations were within the acceptable limits. Overall, this method demonstrated high sensitivity, specificity, and reproducibility, making it suitable for routine clinical applications. Minor deviations at low concentrations do not compromise reliability; however, future optimizations, such as matrix-matched calibration, may further improve performance. Full article
(This article belongs to the Special Issue Recent Developments in Chromatographic Applications in Medicine)
Show Figures

Figure 1

28 pages, 14913 KB  
Article
Turning Seasonal Signals into Segmentation Cues: Recolouring the Harmonic Normalized Difference Vegetation Index for Agricultural Field Delineation
by Filip Papić, Luka Rumora, Damir Medak and Mario Miler
Sensors 2025, 25(18), 5926; https://doi.org/10.3390/s25185926 - 22 Sep 2025
Viewed by 145
Abstract
Accurate delineation of fields is difficult in fragmented landscapes where single-date images provide no seasonal cues and supervised models require labels. We propose a method that explicitly represents phenology to improve zero-shot delineation. Using 22 cloud-free PlanetScope scenes over a 5 × 5 [...] Read more.
Accurate delineation of fields is difficult in fragmented landscapes where single-date images provide no seasonal cues and supervised models require labels. We propose a method that explicitly represents phenology to improve zero-shot delineation. Using 22 cloud-free PlanetScope scenes over a 5 × 5 km area, a single harmonic model is fitted to the NDVI per pixel to obtain the phase, amplitude and mean. These values are then mapped into cylindrical colour spaces (Hue–Saturation–Value, Hue–Whiteness–Blackness, Luminance-Chroma-Hue). The resulting recoloured composites are segmented using the Segment Anything Model (SAM), without fine-tuning. The results are evaluated object-wise, object-wise grouped by area size, and pixel-wise. Pixel-wise evaluation achieved up to F1 = 0.898, and a mean Intersection-over-Union (mIoU) of 0.815, while object-wise performance reached F1 = 0.610. HSV achieved the strongest area match, while HWB produced the fewest fragments. The ordinal time-of-day basis provided better parcel separability than the annual radian adjustment. The main errors were over-segmentation and fragmentation. As the parcel size increased, the IoU increased, but the precision decreased. It is concluded that recolouring using harmonic NDVI time series is a simple, scalable, and interpretable basis for field delineation that can be easily improved. Full article
(This article belongs to the Special Issue Sensors and Data-Driven Precision Agriculture—Second Edition)
Show Figures

Figure 1

13 pages, 728 KB  
Article
Serum Galectin-3 and Presepsin Levels in Pediatric Familial Mediterranean Fever Patients During Remission: A Prospective Study
by Seyda Dogantan, Peren Perk, Arzu Sekerci Yuksel, Rahime Koc and Adem Keskin
Diagnostics 2025, 15(18), 2403; https://doi.org/10.3390/diagnostics15182403 - 21 Sep 2025
Viewed by 202
Abstract
Background/Objectives: Familial Mediterranean fever (FMF) is the most common hereditary autoinflammatory syndrome, characterized by recurrent fever attacks and serositis. Galectin-3, a β-galactoside-binding lectin involved in inflammation and fibrosis, and presepsin, an established biomarker for bacterial infection and sepsis, have emerged as potential biomarkers [...] Read more.
Background/Objectives: Familial Mediterranean fever (FMF) is the most common hereditary autoinflammatory syndrome, characterized by recurrent fever attacks and serositis. Galectin-3, a β-galactoside-binding lectin involved in inflammation and fibrosis, and presepsin, an established biomarker for bacterial infection and sepsis, have emerged as potential biomarkers for improving diagnostic and prognostic accuracy in autoinflammatory diseases. However, their use in FMF patients is not sufficiently evaluated. This study aims to compare serum galectin-3 and presepsin levels in children with FMF and healthy controls and assess their correlations with conventional acute-phase reactants. Methods: This prospective cross-sectional study included 74 children with confirmed FMF during attack-free periods and 67 age- and gender-matched healthy controls. Clinical and genetic characteristics, complete blood count, C-reactive protein (CRP), serum amyloid-A (SAA), and erythrocyte sedimentation rate (ESR) were recorded. Serum galectin-3 and presepsin levels were measured. Group comparisons and correlation analyses were performed using appropriate statistical tests. Results: Median serum galectin-3 and presepsin was significantly higher in FMF patients than controls (p < 0.001). ESR was significantly higher in FMF patients (p < 0.001), while CRP and SAA showed no significant differences. Correlation analysis revealed a strong positive correlation between galectin-3 and presepsin (r = 0.860, p < 0.001) in FMF patients, with neither correlating with other acute-phase reactants. Conclusions: Galectin-3 and presepsin were found to serve as novel biomarkers reflecting alternative inflammatory pathways in FMF, even during remission. These results, obtained during the attack-free period, indicate the need for further studies to determine the relationship between galectin-3 and presepsin levels and disease activity in FMF. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

14 pages, 1963 KB  
Article
Analysis on Phase Polarity of Mandrel Fiber-Optic Vector Hydrophones Based on Phase Generated Carrier Technique
by Yatao Li, Jianfei Wang, Rui Liang, Jingjing Feng, Mo Chen, Jiaze Zhao and Zhou Meng
J. Mar. Sci. Eng. 2025, 13(9), 1825; https://doi.org/10.3390/jmse13091825 - 20 Sep 2025
Viewed by 196
Abstract
In ocean engineering, the demand for fiber-optic vector hydrophones (FOVHs) is increasing. The performance of a FOVH depends on phase consistency between its pressure and acceleration channels, which should match the acoustic field’s properties. Phase polarity, which refers to the alignment of the [...] Read more.
In ocean engineering, the demand for fiber-optic vector hydrophones (FOVHs) is increasing. The performance of a FOVH depends on phase consistency between its pressure and acceleration channels, which should match the acoustic field’s properties. Phase polarity, which refers to the alignment of the output signal with the acoustic field direction, is critical. Incorrect phase polarity during sensor assembly can disrupt phase consistency and invalidate directional measurements. This study investigates phase polarity in mandrel FOVHs that use the Phase Generated Carrier (PGC) technique. We develop a theoretical model combining the PGC algorithm with elastic mechanics to analyze the response of acoustic signals. Our model shows that correct demodulated signal polarity requires a specific physical setup: the pressure sensor’s long arm should be on the inner mandrel and the short arm on the outer, while the accelerometer’s positive axis should follow the vector from the long to its short arm. These results are validated through standing wave tube experiments and lake tests. This research provides practical guidelines for the installation and calibration of FOVHs, ensuring phase consistency in underwater acoustic sensing. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop