A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates
Abstract
1. Introduction
2. Results and Discussion
2.1. Two-Stage Parameter Optimization
2.2. Tuning UA–CG Cross-Interactions via LVFFAR9 Monomer
2.3. LVFFAR9 Co-Assembly into Droplets via Micelle-like Intermediates with LVFF Hydrophobic Core
2.4. Reaction-Limited Cluster Coalescence and β-Sheet Nucleation
2.5. Amyloid Registry Polymorphism
2.6. Stoichiometry Dependence of Amyloid Formation
3. Materials and Methods
3.1. LVFFAR9 Hybrid UA–CG Model
3.2. Parameterization of UA-CG LJ Interaction
3.3. Simulation Settings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | Institute All-atom |
| CG | Coarse-grained |
| UA | United-atom |
| LLPS | Liquid–liquid phase separation |
| Radius of gyration | |
| PMF | Potential of mean force |
| WHAM | Weighted histogram analysis method |
| ATP | Adenosine triphosphate |
References
- Pappu, R.V.; Cohen, S.R.; Dar, F.; Farag, M.; Kar, M. Phase Transitions of Associative Biomacromolecules. Chem. Rev. 2023, 123, 8945–8987. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef]
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; Van Den Bosch, L.; et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef]
- Söding, J.; Zwicker, D.; Sohrabi-Jahromi, S.; Boehning, M.; Kirschbaum, J. Mechanisms for Active Regulation of Biomolecular Condensates. Trends Cell Biol. 2020, 30, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Alberti, S.; Hyman, A.A. Biomolecular Condensates at the Nexus of Cellular Stress, Protein Aggregation Disease and Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. [Google Scholar] [CrossRef]
- Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev. Cell 2020, 55, 45–68. [Google Scholar] [CrossRef]
- Franzmann, T.M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A.S.; Nüske, E.; Richter, D.; Baumeister, W.; Grill, S.W.; Pappu, R.V.; et al. Phase Separation of a Yeast Prion Protein Promotes Cellular Fitness. Science 2018, 359, eaao5654. [Google Scholar] [CrossRef] [PubMed]
- Michaels, T.C.; Qian, D.; Šarić, A.; Vendruscolo, M.; Linse, S.; Knowles, T.P. Amyloid Formation as a Protein Phase Transition. Nat. Rev. Phys. 2023, 5, 379–397. [Google Scholar] [CrossRef]
- Visser, B.S.; Lipiński, W.P.; Spruijt, E. The Role of Biomolecular Condensates in Protein Aggregation. Nat. Rev. Chem. 2024, 8, 686–700. [Google Scholar] [CrossRef]
- Yuan, C.; Li, Q.; Xing, R.; Li, J.; Yan, X. Peptide Self-Assembly through Liquid-Liquid Phase Separation. Chem 2023, 9, 2425–2445. [Google Scholar] [CrossRef]
- Alberti, S.; Arosio, P.; Best, R.B.; Boeynaems, S.; Cai, D.; Collepardo-Guevara, R.; Dignon, G.L.; Dimova, R.; Elbaum-Garfinkle, S.; Fawzi, N.L.; et al. Current Practices in the Study of Biomolecular Condensates: A Community Comment. Nat. Commun. 2025, 16, 7730. [Google Scholar] [CrossRef]
- Goetz, S.K.; Mahamid, J. Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Dev. Cell 2020, 55, 97–107. [Google Scholar] [CrossRef]
- Saar, K.L.; Qian, D.; Good, L.L.; Morgunov, A.S.; Collepardo-Guevara, R.; Best, R.B.; Knowles, T.P. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem. Rev. 2023, 123, 8988–9009. [Google Scholar] [CrossRef]
- Dignon, G.L.; Zheng, W.; Kim, Y.C.; Best, R.B.; Mittal, J. Sequence Determinants of Protein Phase Behavior from a Coarse-Grained Model. PLoS Comput. Biol. 2018, 14, e1005941. [Google Scholar] [CrossRef]
- Joseph, J.A.; Reinhardt, A.; Aguirre, A.; Chew, P.Y.; Russell, K.O.; Espinosa, J.R.; Garaizar, A.; Collepardo-Guevara, R. Physics-Driven Coarse-Grained Model for Biomolecular Phase Separation with near-Quantitative Accuracy. Nat. Comput. Sci. 2021, 1, 732–743. [Google Scholar] [CrossRef]
- Tesei, G.; Lindorff-Larsen, K. Improved Predictions of Phase Behaviour of Intrinsically Disordered Proteins by Tuning the Interaction Range. Open Res. Eur. 2023, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Garcia, G.; Heo, L.; Lapidus, L.J.; Feig, M. Modeling Concentration-Dependent Phase Separation Processes Involving Peptides and RNA via Residue-Based Coarse-Graining. J. Chem. Theory Comput. 2023, 19, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Jussupow, A.; Bartley, D.; Lapidus, L.J.; Feig, M. COCOMO2: A Coarse-Grained Model for Interacting Folded and Disordered Proteins. J. Chem. Theory Comput. 2025, 21, 2095–2107. [Google Scholar] [CrossRef] [PubMed]
- Regy, R.M.; Thompson, J.; Kim, Y.C.; Mittal, J. Improved Coarse-Grained Model for Studying Sequence Dependent Phase Separation of Disordered Proteins. Protein Sci. 2021, 30, 1371–1379. [Google Scholar] [CrossRef]
- Tejedor, A.R.; Aguirre Gonzalez, A.; Maristany, M.J.; Chew, P.Y.; Russell, K.; Ramirez, J.; Espinosa, J.R.; Collepardo-Guevara, R. Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates. ACS Cent. Sci. 2025, 11, 302–321. [Google Scholar] [CrossRef]
- Tesei, G.; Schulze, T.K.; Crehuet, R.; Lindorff-Larsen, K. Accurate Model of Liquid–Liquid Phase Behavior of Intrinsically Disordered Proteins from Optimization of Single-Chain Properties. Proc. Natl. Acad. Sci. USA 2021, 118, e2111696118. [Google Scholar] [CrossRef]
- Conticello, V.P. Peptide-Based Nanomaterials: Building Back Better & Beyond. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101066. [Google Scholar] [CrossRef]
- Kaygisiz, K.; Sementa, D.; Athiyarath, V.; Chen, X.; Ulijn, R.V. Context Dependence in Assembly Code for Supramolecular Peptide Materials and Systems. Nat. Rev. Mater. 2025, 10, 449–472. [Google Scholar] [CrossRef]
- Garaizar, A.; Espinosa, J.R.; Joseph, J.A.; Krainer, G.; Shen, Y.; Knowles, T.P.; Collepardo-Guevara, R. Aging Can Transform Single-Component Protein Condensates into Multiphase Architectures. Proc. Natl. Acad. Sci. USA 2022, 119, e2119800119. [Google Scholar] [CrossRef]
- Tejedor, A.R.; Sanchez-Burgos, I.; Estevez-Espinosa, M.; Garaizar, A.; Collepardo-Guevara, R.; Ramirez, J.; Espinosa, J.R. Protein Structural Transitions Critically Transform the Network Connectivity and Viscoelasticity of RNA-Binding Protein Condensates but RNA Can Prevent It. Nat. Commun. 2022, 13, 5717. [Google Scholar] [CrossRef]
- Bieler, N.S.; Knowles, T.P.; Frenkel, D.; Vácha, R. Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations. PLoS Comput. Biol. 2012, 8, e1002692. [Google Scholar] [CrossRef]
- Ranganathan, S.; Ghosh, D.; Maji, S.K.; Padinhateeri, R. A Minimal Conformational Switching-Dependent Model for Amyloid Self-Assembly. Sci. Rep. 2016, 6, 21103. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Schulten, K. Further Optimization of a Hybrid United-Atom and Coarse-Grained Force Field for Folding Simulations: Improved Backbone Hydration and Interactions between Charged Side Chains. J. Chem. Theory Comput. 2012, 8, 4413–4424. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Han, W. Development of a Hybrid-Resolution Force Field for Peptide Self-Assembly Simulations: Optimizing Peptide–Peptide and Peptide–Solvent Interactions. J. Chem. Inf. Model. 2022, 62, 2744–2760. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Rong, X.; Zhang, J.; Su, R.; Wang, Y.; Qi, W. Computational Design of Peptide Assemblies. J. Chem. Theory Comput. 2024, 20, 532–550. [Google Scholar] [CrossRef]
- Benayad, Z.; von Bulow, S.; Stelzl, L.S.; Hummer, G. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model. J. Chem. Theory Comput. 2020, 17, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Holehouse, A.S.; Chilkoti, A.; Mittag, T.; Pappu, R.V. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins. Biophys. J. 2020, 119, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Kassem, S.; Fisher, R.S.; Wang, B.; Li, T.-D.; Wang, T.; He, Y.; Elbaum-Garfinkle, S.; Ulijn, R.V. Connected Peptide Modules Enable Controlled Co-Existence of Self-Assembled Fibers inside Liquid Condensates. J. Am. Chem. Soc. 2022, 144, 15002–15007. [Google Scholar] [CrossRef]
- De Jong, D.H.; Singh, G.; Bennett, W.D.; Arnarez, C.; Wassenaar, T.A.; Schafer, L.V.; Periole, X.; Tieleman, D.P.; Marrink, S.J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Periole, X.; Cavalli, M.; Marrink, S.-J.; Ceruso, M.A. Combining an Elastic Network with a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. J. Chem. Theory Comput. 2009, 5, 2531–2543. [Google Scholar] [CrossRef]
- Monticelli, L.; Kandasamy, S.K.; Periole, X.; Larson, R.G.; Tieleman, D.P.; Marrink, S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4, 819–834. [Google Scholar] [CrossRef]
- Thomasen, F.E.; Skaalum, T.; Kumar, A.; Srinivasan, S.; Vanni, S.; Lindorff-Larsen, K. Rescaling Protein-Protein Interactions Improves Martini 3 for Flexible Proteins in Solution. Nat. Commun. 2024, 15, 6645. [Google Scholar] [CrossRef]
- Meakin, P. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys. Rev. Lett. 1983, 51, 1119. [Google Scholar] [CrossRef]
- Weitz, D.; Huang, J.; Lin, M.; Sung, J. Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids. Phys. Rev. Lett. 1985, 54, 1416. [Google Scholar] [CrossRef]
- Li, S.; Wu, B.; Luo, Y.L.; Han, W. Simulations of Functional Motions of Super Large Biomolecules with a Mixed-Resolution Model. J. Chem. Theory Comput. 2024, 20, 2228–2245. [Google Scholar] [CrossRef]
- Sorensen, C. Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Wennberg, C.L.; Murtola, T.; Páll, S.; Abraham, M.J.; Hess, B.; Lindahl, E. Direct-Space Corrections Enable Fast and Accurate Lorentz–Berthelot Combination Rule Lennard-Jones Lattice Summation. J. Chem. Theory Comput. 2015, 11, 5737–5746. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N Log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Kästner, J. Umbrella Sampling. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 2011, 1, 932–942. [Google Scholar] [CrossRef]
- Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Hopkins, C.W.; Le Grand, S.; Walker, R.C.; Roitberg, A.E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Li, S.; Han, W. A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates. Molecules 2025, 30, 3946. https://doi.org/10.3390/molecules30193946
Zheng H, Li S, Han W. A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates. Molecules. 2025; 30(19):3946. https://doi.org/10.3390/molecules30193946
Chicago/Turabian StyleZheng, Hang, Shu Li, and Wei Han. 2025. "A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates" Molecules 30, no. 19: 3946. https://doi.org/10.3390/molecules30193946
APA StyleZheng, H., Li, S., & Han, W. (2025). A Hybrid UA–CG Force Field for Aggregation Simulation of Amyloidogenic Peptide via Liquid-like Intermediates. Molecules, 30(19), 3946. https://doi.org/10.3390/molecules30193946

