Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,423)

Search Parameters:
Keywords = phase convention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7663 KiB  
Article
Fe–P Alloy Production from High-Phosphorus Oolitic Iron Ore via Efficient Pre-Reduction and Smelting Separation
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(8), 778; https://doi.org/10.3390/min15080778 - 24 Jul 2025
Abstract
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or [...] Read more.
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or wear-resistant cast iron, indicating promising application prospects. Using oolitic magnetite concentrate (52.06% Fe, 0.37% P) as feedstock, optimized conditions including pre-reduction at 1050 °C for 2 h with C/Fe mass ratio of 2, followed by smelting separation at 1550 °C for 20 min with 5% coke, produced a metallic phase containing 99.24% Fe and 0.73% P. Iron and phosphorus recoveries reached 99.73% and 99.15%, respectively. EPMA microanalysis confirmed spatial correlation between iron and phosphorus in the metallic phase, with undetectable phosphorus signals in vitreous slag. This evidence suggests preferential phosphorus enrichment through interfacial mass transfer along the pathway of the slag phase to the metal interface and finally the iron matrix, forming homogeneous Fe–P solid solutions. The phosphorus migration mechanism involves sequential stages: apatite lattice decomposition liberates reactive P2O5 under SiO2/Al2O3 influence; slag–iron interfacial co-reduction generates Fe3P intermediates; Fe3P incorporation into the iron matrix establishes stable solid solutions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
26 pages, 1234 KiB  
Article
Joint Optimization of DCCR and Energy Efficiency in Active STAR-RIS-Assisted UAV-NOMA Networks
by Yan Zhan, Yi Hong, Deying Li, Chuanwen Luo and Xin Fan
Drones 2025, 9(8), 520; https://doi.org/10.3390/drones9080520 - 24 Jul 2025
Abstract
This paper investigated the issues of unstable data collection links and low efficiency in IoT data collection for smart cities by combining active STAR-RIS with UAVs to enhance channel quality, achieving efficient data collection in complex environments. To this end, we propose an [...] Read more.
This paper investigated the issues of unstable data collection links and low efficiency in IoT data collection for smart cities by combining active STAR-RIS with UAVs to enhance channel quality, achieving efficient data collection in complex environments. To this end, we propose an active simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted UAV-enabled NOMA data collection system that jointly optimizes active STAR-RIS beamforming, SN power allocation, and UAV trajectory to maximize the system energy efficiency (EE) and the data complete collection rate (DCCR). We apply block coordinate ascent (BCA) to decompose the non-convex problem into three alternating subproblems: combined beamforming optimization of phase shift and amplification gain matrices, power allocation, and trajectory optimization, which are iteratively processed through successive convex approximation (SCA) and fractional programming (FP) methods, respectively. Simulation results demonstrate the proposed algorithm’s rapid convergence and significant advantages over conventional NOMA and OMA schemes in both throughput rate and DCCR. Full article
Show Figures

Figure 1

20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

21 pages, 1563 KiB  
Systematic Review
Anhedonia and Negative Symptoms in First-Episode Psychosis: A Systematic Review and Meta-Analysis of Prevalence, Mechanisms, and Clinical Implications
by Valerio Ricci, Alessandro Sarni, Marialuigia Barresi, Lorenzo Remondino and Giuseppe Maina
Healthcare 2025, 13(15), 1796; https://doi.org/10.3390/healthcare13151796 - 24 Jul 2025
Abstract
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention [...] Read more.
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention strategies in early psychosis remains limited. Objectives: To systematically examine the prevalence and characteristics of anhedonia in FEP patients, explore neurobiological mechanisms, identify clinical correlates and predictive factors, and evaluate intervention efficacy. Methods: Following PRISMA 2020 guidelines, we conducted comprehensive searches across PubMed, Embase, PsycINFO, and Web of Science databases from January 1990 to June 2025. Studies examining anhedonia and negative symptoms in FEP patients (≤24 months from onset) using validated assessment instruments were included. Quality assessment was performed using appropriate tools for study design. Results: Twenty-one studies comprising 3847 FEP patients met inclusion criteria. Anhedonia prevalence ranged from 30% at 10-year follow-up to 53% during acute phases, demonstrating persistent motivational deficits across illness trajectory. Factor analytic studies consistently supported five-factor negative symptom models with anhedonia as a discrete dimension. Neuroimaging investigations revealed consistent alterations in reward processing circuits, including ventral striatum hypofunction and altered network connectivity patterns. Social anhedonia demonstrated stronger associations with functional outcomes compared to other domains. Epigenetic mechanisms involving oxytocin receptor methylation showed gender-specific associations with anhedonia severity. Conventional antipsychotic treatments showed limited efficacy for anhedonia improvement, while targeted psychosocial interventions demonstrated preliminary promise. Conclusions: Anhedonia showed high prevalence (30–53%) across FEP populations with substantial clinical burden (13-fold increased odds vs. general population). Meta-analysis revealed large effect sizes for anhedonia severity in FEP vs. controls (d = 0.83) and strong negative correlations with functional outcomes (r =·−0.82). Neuroimaging demonstrated consistent ventral striatum dysfunction and altered network connectivity. Social anhedonia emerged as the strongest predictor of functional outcomes, with independent suicide risk associations. Conventional antipsychotics showed limited efficacy, while behavioral activation approaches demonstrated preliminary promise. These findings support anhedonia as a distinct treatment target requiring specialized assessment and intervention protocols in early psychosis care. Full article
(This article belongs to the Section Medication Management)
Show Figures

Figure 1

23 pages, 7106 KiB  
Article
A Simulation-Based Comparative Study of Advanced Control Strategies for Residential Air Conditioning Systems
by Jonadri Bundo, Donald Selmanaj, Genci Sharko, Stefan Svensson and Orion Zavalani
Eng 2025, 6(8), 170; https://doi.org/10.3390/eng6080170 - 24 Jul 2025
Abstract
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature [...] Read more.
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature and power consumption. Six controllers were implemented and benchmarked in a high-fidelity Simscape environment under a realistic 48-h summer temperature profile. The proposed MPC scheme, particularly when incorporating outdoor temperature gradient logic, reduced energy consumption by up to 30% compared to conventional PI control while maintaining indoor thermal comfort within the acceptable range. This virtual design workflow shortens the development cycle by deferring climatic chamber testing to the final validation phase. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

29 pages, 8089 KiB  
Article
KDFE: Robust KNN-Driven Fusion Estimator for LEO-SoOP Under Multi-Beam Phased-Array Dynamics
by Jiaqi Yin, Ruidan Luo, Xiao Chen, Linhui Zhao, Hong Yuan and Guang Yang
Remote Sens. 2025, 17(15), 2565; https://doi.org/10.3390/rs17152565 - 23 Jul 2025
Abstract
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered [...] Read more.
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered SNR fluctuation patterns during unpredictable beam handovers, rendering conventional single-algorithm solutions fundamentally inadequate. To address this limitation, we propose KDFE (KNN-Driven Fusion Estimator)—an adaptive framework integrating the Rife–Vincent algorithm and MLE via intelligent switching. Global FFT processing extracts real-time Doppler-SNR parameter pairs, while a KNN-based arbiter dynamically selects the optimal estimator by: (1) Projecting parameter pairs into historical performance space, (2) Identifying the accuracy-optimal algorithm for current beam conditions, and (3) Executing real-time switching to balance accuracy and robustness. This decision model overcomes the accuracy-robustness trade-off by matching algorithmic strengths to beam-specific dynamics, ensuring optimal performance during abrupt SNR transitions and high Doppler rates. Both simulations and field tests demonstrate KDFE’s dual superiority: Doppler estimation errors were reduced by 26.3% (vs. Rife–Vincent) and 67.9% (vs. MLE), and 3D positioning accuracy improved by 13.6% (vs. Rife–Vincent) and 49.7% (vs. MLE). The study establishes a pioneering framework for adaptive LEO-SoOP positioning, delivering a methodological breakthrough for LEO navigation. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

21 pages, 1886 KiB  
Article
A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications
by Yali Wang, Liyang Liu, Tao Liu, Yikai Li, Kai Guo and Yiming Ma
Electronics 2025, 14(15), 2944; https://doi.org/10.3390/electronics14152944 - 23 Jul 2025
Abstract
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic [...] Read more.
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic allocation mechanism based on a reference signal, this strategy alternates inner and outer power switches at the fundamental frequency, ensuring balanced switching frequency across devices. Consequently, it effectively mitigates the inherent loss imbalance in conventional ANPC topologies. Quantitative analysis using a power device loss model shows that, compared to conventional carrier phase-shift modulation, the proposed method reduces total system losses by 39.98% and improves the loss-balancing index by 18.27% over inner-switch fundamental frequency modulation. A multidimensional validation framework, including an MW-level hardware platform, numerical simulations, and test data, was established. The results confirm the proposed strategy’s effectiveness in improving power device thermal balance. Full article
22 pages, 3969 KiB  
Article
CLB-BER: An Approach to Electricity Consumption Behavior Analysis Using Time-Series Symmetry Learning and LLMs
by Jingyi Su, Nan Zhang, Yang Zhao and Hua Chen
Symmetry 2025, 17(8), 1176; https://doi.org/10.3390/sym17081176 - 23 Jul 2025
Abstract
This study proposes an application framework based on Large Language Models (LLMs) to analyze multimodal heterogeneous data in the power sector and introduces the CLB-BER model for classifying user electricity consumption behavior. We first employ the Euclidean–Cosine Dynamic Windowing (ECDW) method to optimize [...] Read more.
This study proposes an application framework based on Large Language Models (LLMs) to analyze multimodal heterogeneous data in the power sector and introduces the CLB-BER model for classifying user electricity consumption behavior. We first employ the Euclidean–Cosine Dynamic Windowing (ECDW) method to optimize the adjustment phase of the CLUBS clustering algorithm, improving the classification accuracy of electricity consumption patterns and establishing a mapping between unlabeled behavioral features and user types. To overcome the limitations of traditional clustering algorithms in recognizing emerging consumption patterns, we fine-tune a pre-trained DistilBERT model and integrate it with a Softmax layer to enhance classification performance. The experimental results on real-world power grid data demonstrate that the CLB-BER model significantly outperforms conventional algorithms in terms of classification efficiency and accuracy, achieving 94.21% accuracy and an F1 score of 94.34%, compared to 92.13% accuracy for Transformer and lower accuracy for baselines like KNN (81.45%) and SVM (86.73%); additionally, the Improved-C clustering achieves a silhouette index of 0.63, surpassing CLUBS (0.62) and K-means (0.55), underscoring its potential for power grid analysis and user behavior understanding. Our framework inherently preserves temporal symmetry in consumption patterns through dynamic sequence alignment, enhancing its robustness for real-world applications. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 6181 KiB  
Article
Speed Sensorless Control for a Six-Phase Induction Machine Based on a Sliding Mode Observer
by Larizza Delorme, Magno Ayala, Osvaldo Gonzalez, Jorge Rodas, Raúl Gregor and Jesus C. Hernandez
Machines 2025, 13(8), 639; https://doi.org/10.3390/machines13080639 - 23 Jul 2025
Abstract
This paper presents the application of a sliding mode observer for speed sensorless control of a six-phase induction machine. The use of nonlinear sliding mode techniques yields acceptable performance for both low- and high-speed motor operations over a wide speed range. The effectiveness [...] Read more.
This paper presents the application of a sliding mode observer for speed sensorless control of a six-phase induction machine. The use of nonlinear sliding mode techniques yields acceptable performance for both low- and high-speed motor operations over a wide speed range. The effectiveness and accuracy of the developed sensorless scheme are verified by experimental results, which demonstrate the system’s performance under various operating conditions. These results demonstrate the advantages of the proposal as a valid alternative to the conventional method, which uses a mechanical speed sensor for multiphase machines. Additionally, the sensorless approach can also serve as a redundant backup in the event of mechanical sensor failure, thereby increasing the reliability of the overall drive system. Full article
(This article belongs to the Special Issue Recent Progress in Electrical Machines and Motor Drives)
Show Figures

Figure 1

14 pages, 2673 KiB  
Article
Evaluation of GaN Transistors for Grid-Connected 3-Level T-Type Inverters
by Julian Endres, Tobias Haas, Alexander Pawellek, Vinicius Kremer and Roger Franchino
Electronics 2025, 14(15), 2935; https://doi.org/10.3390/electronics14152935 - 23 Jul 2025
Abstract
This paper presents a complete workflow for the evaluation of GaN transistors in voltage source inverters. With the associated high switching speed of transistors based on GaN, it is important to consider some critical points in the design phase as well as in [...] Read more.
This paper presents a complete workflow for the evaluation of GaN transistors in voltage source inverters. With the associated high switching speed of transistors based on GaN, it is important to consider some critical points in the design phase as well as in the measurement setup in order to be able to utilise and verify the advantages of GaN properly. For this reason, the presented circuit board’s design focuses on a minimised power loop inductance. Simulation models, an analytical approach and measurement results with the aim of determining this inductance are compared with each other. A good compliance results between the presented methods. Additionally, the description of a test bench is given, which enables the performance of the opposition method. This setup allows the measurement of the designed H-bridge’s arising losses and the GaN-transistor’s switching behaviour. In comparison to the conventional double pulse method, this approach enables results that are more accurate for determining losses. Full article
Show Figures

Figure 1

16 pages, 13319 KiB  
Article
Research on Acoustic Field Correction Vector-Coherent Total Focusing Imaging Method Based on Coarse-Grained Elastic Anisotropic Material Properties
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Sensors 2025, 25(15), 4550; https://doi.org/10.3390/s25154550 - 23 Jul 2025
Abstract
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ [...] Read more.
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ properties, is proposed. To demonstrate the effectiveness of this method, a test specimen, an austenitic stainless steel nozzle weld, was employed. Seven side-drilled hole defects located at varying positions and depths, each with a diameter of 2 mm, were examined. An ultrasound simulation model was developed based on material backscatter diffraction results, and the scattering attenuation compensation factor was optimized. The acoustic field correction function was derived by combining acoustic field directivity with diffusion attenuation compensation. The phase coherence weighting coefficients were calculated, followed by image reconstruction. The results show that the proposed method significantly improves imaging amplitude uniformity and reduces the structural noise caused by the coarse crystal structure of austenitic stainless steel. Compared to conventional total focus imaging, the detection SNR of the seven defects increased by 2.34 dB to 10.95 dB. Additionally, the defect localization error was reduced from 0.1 mm to 0.05 mm, with a range of 0.70 mm to 0.88 mm. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

12 pages, 2715 KiB  
Article
Room-Temperature Plasma Hydrogenation of Fatty Acid Methyl Esters (FAMEs)
by Benjamin Wang, Trevor Jehl, Hongtao Zhong and Mark Cappelli
Processes 2025, 13(8), 2333; https://doi.org/10.3390/pr13082333 - 23 Jul 2025
Abstract
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl [...] Read more.
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl esters (H-FAMEs) and other high-value hydrocarbons. A key mechanistic advance is achieved via in situ distillation: at the reactor temperature, unsaturated C18 and C20 FAMEs remain liquid due to their low melting points, while the corresponding saturated C18:0 and C20:0 FAMEs (with melting points of approximately 37–39 °C and 46–47 °C, respectively) solidify and deposit on a glass substrate. This phase separation continuously exposes fresh unsaturated FAME to the plasma, driving further hydrogenation and thereby delivering high overall conversion efficiency. The non-thermal, energy-efficient nature of DBD plasmas offers a promising alternative to conventional high-pressure, high-temperature methods; here, we evaluate the process efficiency, product selectivity, and scalability of this room-temperature, atmospheric-pressure approach and discuss its potential for sustainable fuel-reforming applications. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

17 pages, 4372 KiB  
Article
Research of 110 kV High-Voltage Measurement Method Based on Rydberg Atoms
by Yinglong Diao, Zhaoyang Qu, Nan Qu, Jie Cao, Xinkun Li, Xiaoyu Xu and Shuhang You
Electronics 2025, 14(15), 2932; https://doi.org/10.3390/electronics14152932 - 23 Jul 2025
Abstract
Accurate measurement of high voltages is required to guarantee the safe and stable operation of power systems. Modern power systems, which are mainly based on new energy sources, require high-voltage measurement instruments and equipment with characteristics such as high accuracy, wide frequency bandwidth, [...] Read more.
Accurate measurement of high voltages is required to guarantee the safe and stable operation of power systems. Modern power systems, which are mainly based on new energy sources, require high-voltage measurement instruments and equipment with characteristics such as high accuracy, wide frequency bandwidth, broad operating ranges, and ease of operation and maintenance. However, it is difficult for traditional electromagnetic measurement transformers to meet these requirements. To address the limitations of conventional Rydberg atomic measurement methods in low-frequency applications, this paper proposes an enhanced Rydberg measurement approach featuring high sensitivity and strong traceability, thereby enabling the application of Rydberg-based measurement methodologies under power frequency conditions. In this paper, a 110 kV high-voltage measurement method based on Rydberg atoms is studied. A power-frequency electric field measurement device is designed using Rydberg atoms, and its internal electric field distribution is analyzed. Additionally, a decoupling method is proposed to facilitate voltage measurements under multi-phase overhead lines in field conditions. The feasibility of the proposed method is confirmed, providing support for the future development of practical measurement devices. Full article
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

24 pages, 5129 KiB  
Article
On the Solidification and Phase Stability of Re-Bearing High-Entropy Superalloys with Hierarchical Microstructures
by Wei-Che Hsu, Takuma Saito, Mainak Saha, Hideyuki Murakami, Taisuke Sasaki and An-Chou Yeh
Metals 2025, 15(8), 820; https://doi.org/10.3390/met15080820 - 22 Jul 2025
Abstract
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with [...] Read more.
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with the suppression of detrimental topologically close-packed (TCP) phases. To elucidate solidification behavior and phase stability, Scheil–Gulliver and TC-PRISMA simulations were conducted alongside SEM and XRD analyses. Near-atomic scale analysis in 3D using Atom Probe Tomography (APT) revealed pronounced elemental partitioning, with Re strongly segregating to the γ matrix, while Al and Ti were preferentially enriched in the γ′ phase. Notably, Re demonstrated a unique partitioning behavior compared to conventional superalloys, facilitating the formation and stabilization of γ nanoparticles during two-step aging (Ag-2). These γ nanoparticles significantly contribute to improved mechanical properties. Long-term aging (up to 200 h) at 750–850 °C confirmed exceptional phase stability, with minimal coarsening of γ′ and retention of γ nanoparticles. The coarsening rate constant K of γ′ at 750 °C was significantly lower than that of Re-free HESA, confirming the diffusion-suppressing effect of Re. These findings highlight critical roles of Re in enhancing microstructural stability by reducing atomic mobility, enabling the development of next-generation HESAs with superior thermal and mechanical properties for high-temperature applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

Back to TopTop