Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,859)

Search Parameters:
Keywords = pharmacological resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1579 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
18 pages, 3229 KiB  
Article
AMPK-Targeting Effects of (−)-Epicatechin Gallate from Hibiscus sabdariffa Linne Leaves on Dual Modulation of Hepatic Lipid Accumulation and Glycogen Synthesis in an In Vitro Oleic Acid Model
by Hui-Hsuan Lin, Pei-Tzu Wu, Yu-Hsuan Liang, Ming-Shih Lee and Jing-Hsien Chen
Int. J. Mol. Sci. 2025, 26(15), 7612; https://doi.org/10.3390/ijms26157612 - 6 Aug 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than that of other catechins, its regulatory effects on MASLD have not been fully described previously. Therefore, this study attempted to evaluate the anti-MASLD potential of ECG isolated from Hibiscus leaves on abnormal lipid and glucose metabolism in hepatocytes. First, oleic acid (OA) was used as an experimental model to induce lipid dysmetabolism in human primary hepatocytes. Treatment with ECG can significantly (p < 0.05) reduce the OA-induced cellular lipid accumulation. Nile red staining revealed, compared to the OA group, the inhibition percentages of 29, 61, and 82% at the tested doses of ECG, respectively. The beneficial effects of ECG were associated with the downregulation of SREBPs/HMGCR and upregulation of PPARα/CPT1 through targeting AMPK. Also, ECG at 0.4 µM produced a significant (p < 0.01) decrease in oxidative stress by 83%, and a marked (p < 0.05) increase in glycogen synthesis by 145% on the OA-exposed hepatocytes with insulin signaling blockade. Mechanistic assays indicated lipid and glucose metabolic homeostasis of ECG might be mediated via regulation of lipogenesis, fatty acid β-oxidation, and insulin resistance, as confirmed by an AMPK inhibitor. These results suggest ECG is a dual modulator of lipid and carbohydrate dysmetabolism in hepatocytes. Full article
Show Figures

Figure 1

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

23 pages, 1642 KiB  
Review
The Multifaceted Role of Autophagy in Nasopharyngeal Carcinoma: Translational Perspectives on Pathogenesis, Biomarkers, Treatment Resistance, and Emerging Therapies
by Abdul L. Shakerdi, Emma Finnegan, Yin-Yin Sheng and Graham P. Pidgeon
Cancers 2025, 17(15), 2577; https://doi.org/10.3390/cancers17152577 - 5 Aug 2025
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated with poor prognosis. Objective: This review aims to explore the biological roles of autophagy in NPC, primarily highlighting its involvement in disease pathogenesis and treatment resistance. Methods: We performed a review of the recent literature examining the role of autophagy-related pathways in NPC pathogenesis, biomarker discovery, and therapeutic targeting. Results: Autophagy plays a dual role in NPC as it contributes to both tumour suppression and progression. It is involved in tumour initiation, metastasis, immune modulation, and treatment resistance. Autophagy-related genes such as SQSTM1, Beclin-1, and AURKA may serve as prognostic and therapeutic biomarkers. Various strategies are being investigated for their role to modulate autophagy using pharmacologic inhibitors, RNA interventions, and natural compounds. Conclusions: Further research into autophagy’s context-dependent roles in NPC may inform the development of personalised therapies and allow progress in translational and precision oncology. Full article
Show Figures

Figure 1

20 pages, 3536 KiB  
Article
Gold(III) Complexes with Aromatic Cyano-Substituted Bisdithiolate Ligands as Potential Anticancer and Antimicrobial Agents
by Dulce Belo, Sandra Rabaça, Sara G. Fava, Sílvia A. Sousa, Diogo Coelho, Jorge H. Leitão, Teresa Pinheiro, Célia Fernandes and Fernanda Marques
Molecules 2025, 30(15), 3270; https://doi.org/10.3390/molecules30153270 - 4 Aug 2025
Viewed by 147
Abstract
Cancer and infectious diseases are major causes of global morbidity and mortality stressing the need to find novel drugs with promising dual anticancer and antimicrobial efficacy. Gold complexes have been studied for the past years due to their anticancer properties, with a few [...] Read more.
Cancer and infectious diseases are major causes of global morbidity and mortality stressing the need to find novel drugs with promising dual anticancer and antimicrobial efficacy. Gold complexes have been studied for the past years due to their anticancer properties, with a few of them displaying antimicrobial properties, which support their pharmacological interest. Within this scope, we investigated six gold bisdithiolate complexes [Au (bdt)2] (1), [Au (dcbdt)2] (2), [Au (3-cbdt)2] (3), [Au (4-cbdt)2] (4), [Au (pdt)2] (5) and [Au (dcdmp)2] (6), and) against the ovarian cancer cell lines A2780 and A2780cisR, the Gram-positive bacteria Staphylococcus aureus Newman, the Gram-negative bacteria Escherichia coli ATCC25922 and Burkholderia contaminans IST408, and the pathogenic yeasts Candida glabrata CBS138 and Candida albicans SC5134. Complexes 2 and 6, with ligands containing aromatic pyrazine or phenyl rings, substituted with two cyanonitrile groups, showed after 24 h of incubation high anticancer activities against A2780 ovarian cancer cells (IC50~5 µM), being also able to overcome cisplatin resistance in A2780cisR cells. Both complexes induced the formation of ROS, activated caspase-3/7, and induced necrosis (LDH release) in a dose-dependent way, in a greater extent in the case of 6. Among the bacterial and fungal strains tested, only complex 6 presented antimicrobial activity against S. aureus Newman, indicating that this complex is a potential novel anticancer and antibacterial agent. These results delve into the structure-activity relationship of the complexes, considering molecular alterations such as replacing a phenyl group for a pyrazine group, and the inclusion of one or two cyanonitrile appendage groups, and their effects on biological activity. Overall, both complexes were found to be promising leads for the development of future anticancer drugs against low sensitive or cisplatin resistant tumors. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Graphical abstract

13 pages, 269 KiB  
Review
From Genotype to Guidelines: Rethinking Neutropenia Risk in Clozapine Use
by Amir Agustin Estil-las, William C. Sultan, Carla Sultan, Martena Grace, Mark Elias and Kristal Arraut
Psychiatry Int. 2025, 6(3), 93; https://doi.org/10.3390/psychiatryint6030093 (registering DOI) - 4 Aug 2025
Viewed by 190
Abstract
Clozapine, a second-generation antipsychotic known for its effectiveness in treating resistant schizophrenia, is often linked with serious hematological side effects, particularly neutropenia and agranulocytosis. This review investigates the underlying pathophysiological mechanisms of clozapine-induced neutropenia (CIN) and agranulocytosis (CIA), outlines associated risk factors, and [...] Read more.
Clozapine, a second-generation antipsychotic known for its effectiveness in treating resistant schizophrenia, is often linked with serious hematological side effects, particularly neutropenia and agranulocytosis. This review investigates the underlying pathophysiological mechanisms of clozapine-induced neutropenia (CIN) and agranulocytosis (CIA), outlines associated risk factors, and evaluates current clinical management strategies. Clozapine’s pharmacological profile, marked by its antagonism of dopamine D4 and serotonin receptors, contributes to both its therapeutic advantages and hematological toxicity. Epidemiological data show a prevalence of CIN and CIA at approximately 3.8% and 0.9%, respectively, with onset typically occurring within the first six months of treatment. Key risk factors include older age, Asian and African American ethnicity, female sex, and certain genetic predispositions. The development of CIN and CIA may involve bone marrow suppression and autoimmune mechanisms, although the exact processes remain partially understood. Clinical presentation often includes nonspecific symptoms such as fever and signs of infection, necessitating regular hematological monitoring in accordance with established guidelines. Management strategies include dosage adjustments, cessation of clozapine, and the administration of granulocyte colony-stimulating factors (G-CSF). Advances in pharmacogenomics show promise for predicting susceptibility to CIN and CIA, potentially improving patient safety. This review emphasizes the importance of vigilant monitoring and personalized treatment approaches to reduce the risks associated with clozapine therapy. Full article
11 pages, 245 KiB  
Review
The Impact of Insulin Resistance on Lung Volume Through Right Ventricular Dysfunction in Diabetic Patients—Literature Review
by Daniel Radu, Oana-Andreea Parlițeanu, Andra-Elena Nica, Cristiana Voineag, Octavian-Sabin Alexe, Alexandra Maria Cristea, Livia Georgescu, Roxana Maria Nemeș, Andreea Taisia Tiron and Alexandra Floriana Nemeș
J. Pers. Med. 2025, 15(8), 336; https://doi.org/10.3390/jpm15080336 - 1 Aug 2025
Viewed by 228
Abstract
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients [...] Read more.
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity—factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance—highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients. Full article
(This article belongs to the Section Mechanisms of Diseases)
11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 - 1 Aug 2025
Viewed by 148
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

16 pages, 2047 KiB  
Review
Efflux-Mediated Resistance in Enterobacteriaceae: Recent Advances and Ongoing Challenges to Inhibit Bacterial Efflux Pumps
by Florent Rouvier, Jean-Michel Brunel, Jean-Marie Pagès and Julia Vergalli
Antibiotics 2025, 14(8), 778; https://doi.org/10.3390/antibiotics14080778 - 1 Aug 2025
Viewed by 243
Abstract
Efflux is one of the key mechanisms used by Gram-negative bacteria to reduce internal antibiotic concentrations. These active transport systems recognize and expel a wide range of toxic molecules, including antibiotics, thereby contributing to reduced antibiotic susceptibility and allowing the bacteria to acquire [...] Read more.
Efflux is one of the key mechanisms used by Gram-negative bacteria to reduce internal antibiotic concentrations. These active transport systems recognize and expel a wide range of toxic molecules, including antibiotics, thereby contributing to reduced antibiotic susceptibility and allowing the bacteria to acquire additional resistance mechanisms. To date, unlike other resistance mechanisms such as enzymatic modification or target mutations/masking, efflux is challenging to detect and counteract in clinical settings, and no standardized methods are currently available to diagnose or inhibit this mechanism effectively. This review first outlines the structural and functional features of major efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. It then explores various strategies used to curb their activity, with a particular focus on efflux pump inhibitors under development, detailing their structural classes, modes of action, and pharmacological potential. We discuss the main obstacles to their development, including the structural complexity and substrate promiscuity of efflux mechanisms, the limitations of current screening methods, pharmacokinetic and tissue distribution issues, and the risk of off-target toxicity. Overcoming these multifactorial barriers is essential to the rational development of less efflux-prone antibiotics or of efflux pump inhibitors. Full article
Show Figures

Figure 1

36 pages, 1730 KiB  
Review
Pharmacological Potential of Cinnamic Acid and Derivatives: A Comprehensive Review
by Yu Tian, Xinya Jiang, Jiageng Guo, Hongyu Lu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2025, 18(8), 1141; https://doi.org/10.3390/ph18081141 - 31 Jul 2025
Viewed by 411
Abstract
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives [...] Read more.
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives reported in publications from 2016 to 2025, and anticipates their potential in medical and industrial fields. This review evaluates studies in major scientific databases, including Web of Science, PubMed, and ScienceDirect, to ensure a comprehensive analysis of the therapeutic potential of cinnamic acid. Through systematic integration of existing knowledge, it has been revealed that cinnamic acid has a wide range of pharmacological activities, including anti-tumor, antibacterial, anti-inflammatory, antidepressant and hypoglycemic effects. Additionally, it has been shown to be effective against a variety of pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and foodborne Pseudomonas. Cinnamic acid acts by disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, thereby demonstrating its ability to act as a natural antimicrobial agent. Its anti-inflammatory properties are demonstrated by improving oxidative stress and reducing inflammatory cell infiltration. Furthermore, cinnamic acid enhances metabolic health by improving glucose uptake and insulin sensitivity, showing promising results in improving metabolic health in patients with diabetes and its complications. This systematic approach highlights the need for further investigation of the mechanisms and safety of cinnamic acid to substantiate its use as a basis for new drug development. Particularly in the context of increasing antibiotic resistance and the search for sustainable, effective medical treatments, the study of cinnamic acid is notably significant and innovative. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

24 pages, 2509 KiB  
Review
Potential Applications and Risks of Supranutritional Selenium Supplementation in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Critical Review
by Chuanming Liu, Ke Chen, Zijian Xu, Lianshun Wang, Yinhua Zhu, Zhengquan Yu, Tong Li and Jiaqiang Huang
Nutrients 2025, 17(15), 2484; https://doi.org/10.3390/nu17152484 - 30 Jul 2025
Viewed by 549
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays a critical role in antioxidation, regulation of inflammation, anticancer activity, and so on. Recent studies have reported that supplementation with selenium could alleviate MASLD and associated hepatic disorders, while excessive consumption may result in insulin resistance or even selenosis. Therefore, supranutritional selenium supplementation can be more suitable for the therapy and prevention of MASLD. This paper comprehensively reviews research about selenium and MASLD to highlight the potential applications and risks of supranutritional selenium supplementation in MASLD, following three steps: conducting a search, reviewing research articles and reviews, and discussing results. The keywords for the search include but are not limited to selenium, MASLD, supranutritional, hepatic diseases, selenoproteions, and selenium nanoparticles (SeNPs). We have reached the following conclusions: supranutritional selenium supplementation exhibits promising potential as a strategy to treat MASLD, but there are still some risks, depending on the dose and form of selenium; evaluating MASLD severity and selenium nutritional status accurately, as well as supplementing with superior forms of selenium (e.g., organic selenium and SeNPs), can further ensure the safety and efficacy of selenium supplementation. However, relationships between selenium homeostasis disorders and the occurrence and development of MASLD have not been fully elucidated. Methods for comprehensively assessing selenium status and mechanisms of selenosis require further investigation and research. Full article
Show Figures

Figure 1

14 pages, 2113 KiB  
Article
NR2F6 as a Disease Driver and Candidate Therapeutic Target in Experimental Cerebral Malaria
by Victoria E. Stefan, Victoria Klepsch, Nikolaus Thuille, Martina Steinlechner, Sebastian Peer, Kerstin Siegmund, Peter Lackner, Erich Schmutzhard, Karin Albrecht-Schgör and Gottfried Baier
Cells 2025, 14(15), 1162; https://doi.org/10.3390/cells14151162 - 28 Jul 2025
Viewed by 265
Abstract
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of [...] Read more.
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of CM having been revealed, our investigation focuses on the role of NR2F6, an established immune checkpoint, as a candidate driver of CM pathology. We employed an experimental mouse model of CM based on Plasmodium berghei ANKA (PbA) infection to compare the relative susceptibility of Nr2f6-knock-out and wild-type C57BL6/N mice. As a remarkable result, Nr2f6 deficiency confers a significant survival benefit. In terms of mechanism, we detected less severe endotheliopathy and, hence, less damage to the blood–brain barrier (BBB), accompanied by decreased sequestered parasites and less cytotoxic T-lymphocytes within the brain, manifesting in a better disease outcome. We present evidence that NR2F6 deficiency renders mice more resistant to experimental cerebral malaria (ECM), confirming a causal and non-redundant role for NR2F6 in the progression of ECM disease. Consequently, pharmacological inhibitors of the NR2F6 pathway could be of use to bolster BBB integrity and protect against CM. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 670
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

24 pages, 2749 KiB  
Article
Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
by Anastasia Aliesa Hermosaningtyas, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8292; https://doi.org/10.3390/app15158292 - 25 Jul 2025
Viewed by 223
Abstract
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial [...] Read more.
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial and anti-Acanthamoeba properties. Callus cultures were established under optimized and controlled conditions, and metabolomic profiling was completed using UPLC-HRMS/MS. In silico analysis, using a molecular docking approach, was applied to understand the interaction between target compounds and Acanthamoeba profilin and identify possible targets for antimicrobial properties. Untargeted metabolomic analysis confirmed the presence of valuable compounds in the callus cultures of the studied species. Biological activity was assessed through anti-Acanthamoeba and antimicrobial assays. Lychnis flos-cuculi and Kickxia elatine callus extracts showed significant inhibitory effects on Acanthamoeba trophozoites, with 87.5% and 80.1% inhibition at 10 mg/mL, respectively. In contrast, E. planum extract stimulated amoebic growth. The anti-Acanthamoeba activity correlated with the presence of ferulic acid and p-coumaric acid in L. flos-cuculi extract, and acteoside in K. elatine extract. Antibacterial testing revealed moderate activity of E. planum and K. elatine extracts against Staphylococcus spp., while Gram-negative bacteria and fungi were largely resistant. These findings highlight the potential of in vitro cultures—particularly those from L. flos-cuculi and K. elatine—as promising, sustainable sources of anti-Acanthamoeba and antimicrobial agents, warranting further investigation into their pharmacologically active constituents. Full article
Show Figures

Figure 1

16 pages, 1396 KiB  
Article
Diet Therapy and Probiotics to Improve Sleep Apnea Risk and Quality of Life in Older Adults (>60 Years) with Metabolic Syndrome: A Study from Romania
by Amina Venter, Amin-Florin El-kharoubi, Mousa El-kharoubi, Evelin Claudia Ghitea, Marc Cristian Ghitea, Timea Claudia Ghitea and Ciprian Florian Venter
Geriatrics 2025, 10(4), 100; https://doi.org/10.3390/geriatrics10040100 - 25 Jul 2025
Viewed by 251
Abstract
Background: Metabolic syndrome (MetS) and obstructive sleep apnea (OSA) are prevalent and interrelated conditions in older adults, both contributing to decreased quality of life and increased health risks. Nutritional interventions, including dietary changes and probiotic supplementation, may offer effective non-pharmacological strategies to address [...] Read more.
Background: Metabolic syndrome (MetS) and obstructive sleep apnea (OSA) are prevalent and interrelated conditions in older adults, both contributing to decreased quality of life and increased health risks. Nutritional interventions, including dietary changes and probiotic supplementation, may offer effective non-pharmacological strategies to address these conditions. This study aimed to evaluate the impact of diet therapy alone and in combination with probiotics on quality of life and sleep apnea risk in older adults (>60 years) with MetS. Methods: In this controlled interventional study, 192 older adults with metabolic syndrome were assigned to one of three groups: control, diet therapy alone, or diet therapy plus probiotic supplementation. Participants were evaluated at baseline and after the intervention period using the SF-36 quality of life questionnaire and an apnea risk screening tool. Clinical and metabolic parameters, including BMI, HOMA index, and visceral fat, were also assessed. Results: Significant improvements in SF-36 scores were observed in both intervention groups compared to the control group (p < 0.05) (mean difference = −5.31, p = 0.016), with the diet + probiotics group showing the greatest enhancement. Participants who reduced their apnea risk also reported higher post-intervention SF-36 scores. The intervention led to reductions in visceral fat, inflammatory markers (CRP), and insulin resistance (HOMA index), which were correlated with improved quality of life. Conclusions: Integrated nutritional strategies, especially the combination of diet and probiotics, significantly improve quality of life and reduce apnea risk in older adults with metabolic syndrome. These findings support the use of personalized, non-pharmacological interventions targeting both metabolic health and sleep-related outcomes in geriatric populations. Full article
Show Figures

Figure 1

Back to TopTop