Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = pharmacological induction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 144 KiB  
Case Report
Multidisciplinary Care Approach to Asymptomatic Brugada Syndrome in Pregnancy: A Case Report
by Isabella Marechal-Ross and Kathryn Austin
Reports 2025, 8(3), 138; https://doi.org/10.3390/reports8030138 - 5 Aug 2025
Abstract
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, [...] Read more.
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, and possibly pregnancy—may unmask or exacerbate arrhythmic risk. However, there is limited information regarding pregnancy and obstetric outcomes. Obstetric management remains largely informed by isolated case reports and small case series. A literature review was conducted using OVID Medline and Embase, identifying case reports, case series, and one retrospective cohort study reporting clinical presentation, obstetric management, and outcomes in maternal BrS. A case is presented detailing coordinated multidisciplinary input, antenatal surveillance, and intrapartum and postpartum care to contribute to the growing evidence base guiding obstetric care in this complex setting. Case Presentation: A 30-year-old G2P0 woman with asymptomatic BrS (SCN5A-positive) was referred at 31 + 5 weeks’ gestation for multidisciplinary antenatal care. Regular review and collaborative planning involving cardiology, anaesthetics, maternal–fetal medicine, and obstetrics guided a plan for vaginal delivery with continuous cardiac and fetal monitoring. At 38 + 0 weeks, the woman presented with spontaneous rupture of membranes and underwent induction of labour. A normal vaginal delivery was achieved without arrhythmic events. Epidural block with ropivacaine and local anaesthesia with lignocaine were well tolerated, and 24 h postpartum monitoring revealed no abnormalities. Conclusions: This case adds to the limited but growing literature suggesting that with individualised planning and multidisciplinary care, pregnancies in women with BrS can proceed safely and without complication. Ongoing case reporting is essential to inform future guidelines and optimise maternal and fetal outcomes. Full article
(This article belongs to the Section Obstetrics/Gynaecology)
17 pages, 5839 KiB  
Article
Salvianolic Acid A Activates Nrf2-Related Signaling Pathways to Inhibit Ferroptosis to Improve Ischemic Stroke
by Yu-Fu Shang, Wan-Di Feng, Dong-Ni Liu, Wen-Fang Zhang, Shuang Xu, Dan-Hong Feng, Guan-Hua Du and Yue-Hua Wang
Molecules 2025, 30(15), 3266; https://doi.org/10.3390/molecules30153266 - 4 Aug 2025
Abstract
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, [...] Read more.
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, which possesses diverse pharmacological activities. This study aims to investigate the effect and mechanisms of SAL-A in inhibiting ferroptosis to improve ischemic stroke. Brain injury, oxidative stress and ferroptosis-related analysis were performed to evaluate the effect of SAL-A on ischemic stroke in photochemical induction of stroke (PTS) in mice. Lipid peroxidation levels, antioxidant protein levels, tissue iron content, nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial morphology changes were detected to explore its mechanism. SAL-A significantly attenuated brain injury, reduced malondialdehyde (MDA) and long-chain acyl-CoA synthase 4 (ACSL4) levels. In addition, SAL-A also amplified the antioxidative properties of glutathione (GSH) when under glutathione peroxidase 4 (GPX4), and the reduction in ferrous ion levels. In vitro, brain microvascular endothelial cells (b.End.3) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate whether the anti-stroke mechanism of SAL-A is related to Nrf2. Following OGD/R, ML385 (Nrf2 inhibitor) prevents SAL-A from inhibiting oxidative stress, ferroptosis, and mitochondrial dysfunction in b.End.3 cells. In conclusion, SAL-A inhibits ferroptosis to ameliorate ischemic brain injury, and this effect is mediated through Nrf2. Full article
Show Figures

Graphical abstract

16 pages, 776 KiB  
Article
Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine
by Essie Komla, Erwin G. Abucayon, C. Steven Godin, Agnieszka Sulima, Arthur E. Jacobson, Kenner C. Rice and Gary R. Matyas
Vaccines 2025, 13(8), 792; https://doi.org/10.3390/vaccines13080792 - 26 Jul 2025
Viewed by 402
Abstract
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to [...] Read more.
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to combat OUD and potentially reduce the risk of overdose death. The TT-6-AmHap heroin conjugate vaccine has effectively reduced heroin-induced pharmacological effects in behavioral assays as well as demonstrated the induction of high titer and high affinity antibody responses in mice and rats. In this GLP study conducted in rabbits, the potential local and systemic toxicity of the TT-6-AmHap heroin vaccine in combination with or without adjuvants ALF43 and Alhydrogel® (ALFA) was investigated. Methods: Male and female New Zealand White rabbits were administered with vaccines or a saline control intramuscularly at two-week intervals over a 57-day study period. The presence, persistence or reversibility of any toxic effects of the vaccine was determined over a four-week recovery period. Results: Administration of TT-6-AmHap with or without the adjuvants induced high antibody-specific IgG in treatment groups compared to the controls. The study found no TT-6-AmHap-related effects on mortality, physical examinations, dermal Draize observations, body weights, body weight changes, food consumption, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, and urinalysis), macroscopic pathology, or organ weights. Conclusions: Under the conditions of this study, these results demonstrate that the TT-6-AmHap vaccine with or without adjuvants was well tolerated, immunogenic, and the effects were not considered adverse in both male and female rabbits. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Graphical abstract

16 pages, 707 KiB  
Review
The Role of Landiolol in Coronary Artery Disease: Insights into Acute Coronary Syndromes, Stable Coronary Artery Disease and Computed Tomography Coronary Angiography
by Athina Nasoufidou, Marios G. Bantidos, Panagiotis Stachteas, Dimitrios V. Moysidis, Andreas Mitsis, Barbara Fyntanidou, Konstantinos Kouskouras, Efstratios Karagiannidis, Theodoros Karamitsos, George Kassimis and Nikolaos Fragakis
J. Clin. Med. 2025, 14(15), 5216; https://doi.org/10.3390/jcm14155216 - 23 Jul 2025
Viewed by 319
Abstract
Coronary artery disease (CAD) constitutes a major contributor to morbidity, mortality and healthcare burden worldwide. Recent innovations in imaging modalities, pharmaceuticals and interventional techniques have revolutionized diagnostic and treatment options, necessitating the reevaluation of established drug protocols or the consideration of newer alternatives. [...] Read more.
Coronary artery disease (CAD) constitutes a major contributor to morbidity, mortality and healthcare burden worldwide. Recent innovations in imaging modalities, pharmaceuticals and interventional techniques have revolutionized diagnostic and treatment options, necessitating the reevaluation of established drug protocols or the consideration of newer alternatives. The utilization of beta blockers (BBs) in the setting of acute myocardial infarction (AMI), shifting from the pre-reperfusion to the thrombolytic and finally the primary percutaneous coronary intervention (pPCI) era, has become increasingly more selective and contentious. Nonetheless, the extent of myocardial necrosis remains a key predictor of outcomes in this patient population, with large trials establishing the beneficial use of beta blockers. Computed tomography coronary angiography (CTCA) has emerged as a highly effective diagnostic tool for delineating the coronary anatomy and atheromatous plaque characteristics, with the added capability of MESH-3D model generation. Induction and preservation of a low heart rate (HR), regardless of the underlying sequence, is of critical importance for high-quality results. Landiolol is an intravenous beta blocker with an ultra-short duration of action (t1/2 = 4 min) and remarkable β1-receptor specificity (β1/β2 = 255) and pharmacokinetics that support its potential for systematic integration into clinical practice. It has been increasingly recognized for its importance in both acute (primarily studied in STEMI and, to a lesser extent, NSTEMI pPCI) and chronic (mainly studied in elective PCI) CAD settings. Given the limited literature focusing specifically on landiolol, the aim of this narrative review is to examine its pharmacological properties and evaluate its current and future role in enhancing both diagnostic imaging quality and therapeutic outcomes in patients with CAD. Full article
Show Figures

Figure 1

20 pages, 3764 KiB  
Article
Neural Progenitor Cell- and Developing Neuron-Derived Extracellular Vesicles Differentially Modulate Microglial Activation
by Tsung-Lang Chiu, Hsin-Yi Huang, Hock-Kean Liew, Hui-Fen Chang, Hsin-Rong Wu and Mei-Jen Wang
Int. J. Mol. Sci. 2025, 26(15), 7099; https://doi.org/10.3390/ijms26157099 - 23 Jul 2025
Viewed by 176
Abstract
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due [...] Read more.
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due to the complexity of microenvironmentally dynamic changes during neuronal differentiation, interactions between developing nerve cells and microglia might be involved in this process. Extracellular vesicles (EVs) are cell-released particles that serve as mediators of cellular crosstalk and regulation. Using neural progenitor cells (NPCs) and a long-term neuron culture system, we found that EVs derived from NPCs or developing neurons possessed differential capacity on the induction of microglial activation. The exposure of microglia to NPC- or immature neuron (DIV7)-derived EVs resulted in the higher expression of protein and mRNA of multiple inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6), when compared with mature neuron-derived EVs. Exploration of the intracellular signaling pathways revealed that MAPK signaling, IκBα phosphorylation/degradation, and NF-κB p65 nuclear translocation were strongly induced in microglia treated with NPC- or immature neuron-derived EVs. Using a pharmacological approach, we further demonstrate that Toll-like receptor (TLR) 7-mediated activation of NF-κB and MAPK signaling cascades contribute to EV-elicited microglial activation. Additionally, the application of conditioned media derived from microglia treated with NPC- or immature neuron-derived EVs is found to promote the survival of late-developing dopaminergic neurons. Thus, our results highlight a novel mechanism used by NPCs and developing neurons to modulate the developmental phases and functions of microglia through EV secretion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 5294 KiB  
Article
Exploring the Regulatory Mechanism of Total Alkaloids from Portulaca oleracea L. in UC Treatment Based on Network Pharmacology
by Tianci Zhang, Linran Gao, Qianying Wang, Jiahui Zheng, Xinyu Wang, Meng Jiang, Kaixin Wu and Jinxia Ai
Int. J. Mol. Sci. 2025, 26(14), 6978; https://doi.org/10.3390/ijms26146978 - 20 Jul 2025
Viewed by 277
Abstract
This study aimed to investigate the potential mechanisms of action of total alkaloids from Portulaca oleracea L. (POL) on ulcerative colitis (UC) using a network pharmacology approach. Network pharmacology analysis identified two bioactive alkaloids within POL as primary anti-UC constituents, targeting 16 core [...] Read more.
This study aimed to investigate the potential mechanisms of action of total alkaloids from Portulaca oleracea L. (POL) on ulcerative colitis (UC) using a network pharmacology approach. Network pharmacology analysis identified two bioactive alkaloids within POL as primary anti-UC constituents, targeting 16 core therapeutic proteins and 113 UC-associated signaling pathways. To further explore the therapeutic effects, in vitro cell assays and in vivo animal experiments were conducted. In vitro, high concentrations of Portulaca oleracea total alkaloids (POAs) demonstrated dose-dependent cytotoxicity, significantly reducing Caco-2 cell viability and impairing migration. In a murine model of UC, disease induction led to substantial weight loss, elevated disease activity index (DAI) scores, colon shortening, and severe colonic tissue damage compared to controls. Furthermore, the UC group displayed significantly upregulated serum levels of pro-inflammatory cytokines, TNF-α and IL-1β, as well as increased protein and mRNA expression of TLR4 and NF-κB in colon tissues. Crucially, POAs treatment effectively ameliorated UC symptoms in mice, significantly reducing DAI scores, mitigating colon shortening, and markedly suppressing TLR4/NF-κB pathway activation. These findings strongly suggest that the therapeutic effects of POAs in UC are, at least in part, mediated by the inhibition of the TLR4/NF-κB signaling pathway, leading to a reduction in colonic inflammation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 21520 KiB  
Article
The Role and Mechanism of GSDME-Dependent Pyroptosis in Cochlear Marginal Cells Injury by Cisplatin
by Wenyang Lei, Wenting Yu, Ting Li, Wei Tang, Shimin Zong and Hongjun Xiao
Biomedicines 2025, 13(7), 1680; https://doi.org/10.3390/biomedicines13071680 - 9 Jul 2025
Viewed by 353
Abstract
Background: Elucidating the mechanisms underlying cisplatin-induced ototoxicity is critical for the clinical management of hearing loss. While cisplatin is known to penetrate the inner ear via the blood-labyrinth barrier in the stria vascularis, its precise damaging effects on marginal cells (MCs) and subsequent [...] Read more.
Background: Elucidating the mechanisms underlying cisplatin-induced ototoxicity is critical for the clinical management of hearing loss. While cisplatin is known to penetrate the inner ear via the blood-labyrinth barrier in the stria vascularis, its precise damaging effects on marginal cells (MCs) and subsequent hearing impairment remain incompletely understood. Pyroptosis, a gasdermin-mediated inflammatory cell death pathway, may play a key role. This study investigated the involvement of gasdermin E (GSDME)-dependent pyroptosis in cisplatin-induced injury to MCs. Methods: An in vitro cisplatin-induced pyroptosis model was established in MCs. GSDME expression was downregulated using small interfering RNA (siRNA), and caspase-3 activity was inhibited pharmacologically. The critical threshold for pyroptosis induction was determined to be 5 μmol/L cisplatin exposure for 24 h, which activated the caspase-3/GSDME signaling pathway. Results: Cisplatin treatment upregulated GSDME and caspase-3 expression in MCs. Both inhibition of GSDME and pharmacological blockade of caspase-3 significantly attenuated cisplatin-induced cellular damage. Notably, caspase-3 suppression reduced GSDME expression, suggesting a positive regulatory relationship between these mediators. Conclusions: GSDME-mediated pyroptosis plays a pivotal role in cisplatin-induced marginal cell injury, with caspase-3 acting as an upstream regulator of GSDME expression. These findings provide a mechanistic foundation for developing novel therapeutic strategies against cisplatin ototoxicity. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

35 pages, 1216 KiB  
Review
Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy
by Natalia Ivanovna Agalakova
Int. J. Mol. Sci. 2025, 26(13), 6407; https://doi.org/10.3390/ijms26136407 - 3 Jul 2025
Viewed by 578
Abstract
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an [...] Read more.
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an adaptive reaction aiming to restore ER proteostasis, prolonged and severe ERS leads to cell death. Taking into account that the components of the ERS/UPR machinery in cancers of different types can be overexpressed or downregulated, both the induction of excessive ERS and suppression of UPR have been proposed as therapeutic strategies to sensitize cells to conventional chemotherapy. This narrative review presents a several examples of using natural and synthetic compounds that can either induce persistent ERS by selectively blocking ER Ca2+ pumps (SERCA) to disrupt ER Ca2+ homeostasis, or altering the activity of UPR chaperones and sensors (GRP78, PERK, IRE1α, and ATF6) to impair protein degradation signaling. The molecular alterations induced by miscellaneous inhibitors of ERS/UPR effectors are described as well. These agents showed promising therapeutic effects as a part of combination therapy in preclinical experimental settings; however, the number of clinical trials is still limited, while their results are inconsistent. Multiple side effects, high toxicity to normal cells, or poor bioavailability also hampers their clinical application. Since the pharmacological modulation of ERS/UPR is a valuable approach to sensitize cancer cells to standard chemotherapy, the search for more selective agents with better stability and low toxicity, as well as the development of more efficient delivery systems that can increase their therapeutic specificity, are highly required goals for future studies. Full article
Show Figures

Figure 1

19 pages, 1203 KiB  
Review
Applications of Limonene in Neoplasms and Non-Neoplastic Diseases
by Katarzyna Rakoczy, Natalia Szymańska, Jakub Stecko, Michał Kisiel, Monika Maruszak, Michał Niedziela and Julita Kulbacka
Int. J. Mol. Sci. 2025, 26(13), 6359; https://doi.org/10.3390/ijms26136359 - 1 Jul 2025
Viewed by 393
Abstract
Plants produce an extensive repertoire of secondary metabolites, developed over evolutionary time to support survival. Among these, D-limonene, a monoterpene exuded by citrus fruits, has demonstrated a broad range of pharmacological activities. This review elucidates limonene’s biological versatility, spanning antioxidant, anti-inflammatory, antitumor, antidiabetic, [...] Read more.
Plants produce an extensive repertoire of secondary metabolites, developed over evolutionary time to support survival. Among these, D-limonene, a monoterpene exuded by citrus fruits, has demonstrated a broad range of pharmacological activities. This review elucidates limonene’s biological versatility, spanning antioxidant, anti-inflammatory, antitumor, antidiabetic, neuroprotective, and gastroprotective domains. Synthesizing data from both preclinical and early-phase clinical research, we explore its molecular mechanisms, ranging from reactive oxygen species mitigation and apoptosis induction to metabolic remodeling and neurotransmitter modulation. Special attention is given to limonene’s emerging role in oncological therapeutics, notably in breast and liver cancers, and its capacity to ameliorate pathophysiological hallmarks of diabetes and neurodegeneration. Its low toxicity and high bioavailability support its potential as a safe adjunct or alternative in phytotherapy. This review advocates for continued investigation into limonene’s translational potential across a spectrum of neoplastic and non-neoplastic diseases. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

38 pages, 5469 KiB  
Review
Alzheimer’s Disease Pathogenic Mechanisms: Linking Redox Homeostasis and Mitochondria-Associated Metabolic Pathways Through Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
by Agueda Rostagno and Jorge Ghiso
Antioxidants 2025, 14(7), 812; https://doi.org/10.3390/antiox14070812 - 1 Jul 2025
Viewed by 741
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, with a prevalence expected to escalate with the aging of the world population as life expectancy increases. In spite of significant progress made in the investigation of the etiology and pathogenesis of the disease, [...] Read more.
Alzheimer’s disease (AD) is the leading cause of dementia, with a prevalence expected to escalate with the aging of the world population as life expectancy increases. In spite of significant progress made in the investigation of the etiology and pathogenesis of the disease, many mechanistic aspects that could support the implementation of novel therapeutic avenues remain unresolved. Research during the last decade has revealed a crucial role for mitochondria-mediated pathways dysregulation as significant contributors to the disease, highlighting the relevance of changes in brain metabolism and bioenergetics as well as the induction of oxidative stress conditions for neurodegeneration. This review summarizes mitochondrial functional changes associated with AD with emphasis in the dysregulation of redox homeostasis and the role of nuclear factor erythroid 2-related factor 2 (Nrf2), not only as a central regulator of the antioxidant response but also as a more recently described modulator of cellular metabolic pathways. Potential therapeutic strategies targeting oxidative stress and mitochondrial dysfunction are also discussed, with particular emphasis on the use of small molecules Nrf2 activators. Exploiting the multifactorial properties of the transcription factor in either novel or combination-based pharmacological approaches targeting multiple genes and pathways may contribute to providing more definitive and precise therapeutic perspectives. Full article
(This article belongs to the Special Issue Role of Nrf2 in Neurodegenerative Diseases)
Show Figures

Figure 1

33 pages, 5649 KiB  
Article
A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats
by Paridhi Gupta, Josiah T. Ryman, Vibha Jawa and Bernd Meibohm
Pharmaceutics 2025, 17(7), 845; https://doi.org/10.3390/pharmaceutics17070845 - 27 Jun 2025
Viewed by 311
Abstract
Background/Objectives: The administration of human monoclonal antibodies (mAb) in preclinical pharmacokinetics and toxicology studies often triggers an immune response, leading to the formation of anti-drug antibodies (ADA). To mitigate this effect, we have recently performed and reported on studies using short-term immunosuppressive regimens [...] Read more.
Background/Objectives: The administration of human monoclonal antibodies (mAb) in preclinical pharmacokinetics and toxicology studies often triggers an immune response, leading to the formation of anti-drug antibodies (ADA). To mitigate this effect, we have recently performed and reported on studies using short-term immunosuppressive regimens to induce prolonged immune tolerance towards a human mAb, erenumab, in rats. Here, we report on the development of a semi-mechanistic modeling approach that quantitatively integrates pharmacokinetic and immunogenicity assessments from immune tolerance induction studies to provide a framework for the simulation-based evaluation of different immune induction scenarios for the maintenance of prolonged immune tolerance towards human mAbs. Methods: The integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach combined a semi-mechanistic model of the adaptive immune system to predict ADA formation kinetics with a population pharmacokinetic model to assess the impact of the time course of the ADA magnitude on the PK of erenumab in rats. Model-derived erenumab concentration–time profiles served as input for a quantitative system pharmacology-style semi-mechanistic model of the adaptive immune system to conceptualize the ADA response as a function of the kinetics of CD4+ T helper cells and T regulatory cells. Results: The model adequately described the observed ADA magnitude–time profiles in all treatment groups and reasonably simulated the kinetics of selected immune cells responsible for ADA formation. It also successfully captured the impact of tacrolimus/sirolimus immunomodulation on ADA formation, demonstrating that the regimen effectively suppressed ADA formations and induced immune tolerance. Conclusions: This work demonstrates the utility of modeling approaches to integrate pharmacokinetic and immunogenicity assessment data for the prospective planning of long-term toxicology studies to support the preclinical development of mAbs. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

18 pages, 1845 KiB  
Article
Anti-Inflammatory and Joint-Protective Effects of Blueberries in a Monosodium Iodoacetate (MIA)-Induced Rat Model of Osteoarthritis
by Sanique M. South, Keith Crabtree, Dayna L. Averitt, Parakat Vijayagopal and Shanil Juma
Nutrients 2025, 17(13), 2134; https://doi.org/10.3390/nu17132134 - 27 Jun 2025
Viewed by 473
Abstract
Background/Objectives: Osteoarthritis is a degenerative joint disease that affects people worldwide. It is characterized by joint pain, synovial inflammation, and the degradation of articular cartilage with subchondral bone. Presently, there is no known cure, and pharmacological treatment options are limited. Blueberries contain phytochemicals, [...] Read more.
Background/Objectives: Osteoarthritis is a degenerative joint disease that affects people worldwide. It is characterized by joint pain, synovial inflammation, and the degradation of articular cartilage with subchondral bone. Presently, there is no known cure, and pharmacological treatment options are limited. Blueberries contain phytochemicals, which have been linked to positive health benefits and may offer therapeutic benefits. Therefore, the purpose of this study was to examine the dose-dependent effects of whole blueberries on arthritis symptoms in a monosodium iodoacetate (MIA)-induced rat model of osteoarthritis. Methods: Forty female rats were used for this study. Thirty were injected with MIA to induce joint degradation associated with osteoarthritis. Ten served as controls without MIA induction. The MIA-induced rats were randomized into three groups. All groups were fed a casein-based diet, with two of the MIA-induced groups receiving an addition of whole-blueberry powder at 5% and 10%. Fasted blood specimens and tissues of interest were collected post-euthanasia for analysis. Mechanical allodynia and joint widths were assessed throughout this study. Results: MIA induction resulted in changes in pain behaviors and the development of mechanical allodynia. The MIA injection produced inflammation, pain symptoms, and behaviors that are representative of those observed in humans with osteoarthritis. The incorporation of whole blueberries into diets reduced pain behaviors and inflammation. Conclusions: Overall, whole blueberries showed limited, non-dose-dependent effects in the MIA-induced rat model of osteoarthritis. While some outcomes improved in blueberry-treated groups, the overall results were not consistently significant. These preliminary findings suggest potential biological activity and support the further investigation of blueberries’ therapeutic efficacy. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

28 pages, 707 KiB  
Review
Bardoxolone Methyl: A Comprehensive Review of Its Role as a Nrf2 Activator in Anticancer Therapeutic Applications
by Valentina Schiavoni, Tiziana Di Crescenzo, Valentina Membrino, Sonila Alia, Sonia Fantone, Eleonora Salvolini and Arianna Vignini
Pharmaceuticals 2025, 18(7), 966; https://doi.org/10.3390/ph18070966 - 27 Jun 2025
Viewed by 620
Abstract
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, [...] Read more.
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, controlling the expression of genes involved in antioxidant defense, detoxification, and mitochondrial function. By inducing Nrf2 and promoting the transcription of downstream antioxidant response element (ARE)-driven genes, bardoxolone methyl enhances cellular resilience to oxidative stress and inflammation. This mechanism is central not only to its cytoprotective effects but also to its emerging role in oncology. A number of studies investigated the effects of bardoxolone methyl in several malignancies including breast cancer, lung cancer, pancreatic ductal adenocarcinoma, prostate cancer, colorectal cancer, oral and esophageal squamous cell carcinoma, ovarian cancer and glioblastoma. Studies in the literature indicate that bardoxolone methyl exhibits anticancer activity through several mechanisms, including the suppression of cell proliferation, induction of cell cycle arrest and apoptosis, inhibition of epithelial–mesenchymal transition (EMT), and impairment of cancer cell stemness. Additionally, bardoxolone methyl modulates mitochondrial function, reduces glycolytic and oxidative phosphorylation capacities, and induces reactive oxygen species (ROS)-mediated stress responses. In this review, we summarize the available literature regarding the studies which investigated the effects of bardoxolone methyl as anticancer agent. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 35398 KiB  
Article
Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology
by Sieun Kang, Chiyeon Lim, Sehyun Lim, Kyoung-Min Kim and Suin Cho
Genes 2025, 16(7), 746; https://doi.org/10.3390/genes16070746 - 26 Jun 2025
Viewed by 512
Abstract
Background: With an aging population, dementia prevalence is increasing in Korea. Vascular dementia (VaD), often caused by cerebrovascular disease (CVD), is more common in Korea compared to Western countries. Hwanhon decoction, a traditional medicine containing Ephedrae Herba, Armeniacae Semen, and Glycyrrhizae Radix et [...] Read more.
Background: With an aging population, dementia prevalence is increasing in Korea. Vascular dementia (VaD), often caused by cerebrovascular disease (CVD), is more common in Korea compared to Western countries. Hwanhon decoction, a traditional medicine containing Ephedrae Herba, Armeniacae Semen, and Glycyrrhizae Radix et Rhizoma, is traditionally used for CVD-related loss of consciousness. This study aimed to assess the cognitive improvement and anti-inflammatory effects of Hwanhon decoction extract (HHex) in a mouse model of VaD caused by chronic cerebral hypoperfusion (CCH). Methods: Key pharmacologically active ingredients of Hwanhon decoction were identified using network pharmacology analysis. VaD was induced in C57Bl/6 male mice through bilateral common carotid artery stenosis (BCAS). Mice were divided into sham surgery, BCAS control, low-dose HHex (L-HHex), and high-dose HHex (H-HHex) groups (n = 5/group). After CCH induction, L-HHex or H-HHex was administered thrice weekly for six weeks. Cognitive function, inflammatory markers, and RNA sequencing data were analyzed. Results: HHex administration reduced cognitive impairment and mitigated CCH-induced astrocyte activation. Inflammatory responses mediated by reactive astrocytes were suppressed, and network pharmacology predicted central proteins influencing HHex’s activity. Conclusions: HHex alleviated cognitive dysfunction and reduced inflammation in a VaD mouse model, suggesting its potential as a therapeutic agent for vascular dementia associated with impaired cerebral blood flow. Full article
(This article belongs to the Special Issue Genetics and Treatment in Neurodegenerative Diseases)
Show Figures

Figure 1

24 pages, 1394 KiB  
Review
Muscle in Endocrinology: From Skeletal Muscle Hormone Regulation to Myokine Secretion and Its Implications in Endocrine–Metabolic Diseases
by Pedro Iglesias
J. Clin. Med. 2025, 14(13), 4490; https://doi.org/10.3390/jcm14134490 - 25 Jun 2025
Viewed by 1711
Abstract
Skeletal muscle, traditionally recognized for its motor function, has emerged as a key endocrine organ involved in metabolic regulation and interorgan communication. This narrative review addresses the dual role of muscle as a target tissue for classical hormones—such as growth hormone (GH), insulin-like [...] Read more.
Skeletal muscle, traditionally recognized for its motor function, has emerged as a key endocrine organ involved in metabolic regulation and interorgan communication. This narrative review addresses the dual role of muscle as a target tissue for classical hormones—such as growth hormone (GH), insulin-like growth factor type 1 (IGF-1), thyroid hormones, and sex steroids—and as a source of myokines, bioactive peptides released in response to muscle contraction that exert autocrine, paracrine, and endocrine effects. Several relevant myokines are discussed, such as irisin and Metrnl-like myokines (Metrnl), which mediate exercise-associated metabolic benefits, including improved insulin sensitivity, induction of thermogenesis in adipose tissue, and immunometabolic modulations. It also examines how muscle endocrine dysfunction, caused by chronic inflammation, hormone resistance, or sedentary lifestyle, contributes to the development and progression of metabolic diseases such as obesity, type 2 diabetes, and sarcopenia, highlighting the importance of muscle mass in the prognosis of these pathologies. Finally, the therapeutic potential of interventions aimed at preserving or enhancing muscle function—through physical exercise, hormone therapy and anabolic agents—is highlighted, together with the growing research on myokines as biomarkers and pharmacological targets. This review expands the understanding of muscle in endocrinology, proposing an integrative approach that recognizes its central role in metabolic health and its potential to innovate the clinical management of endocrine–metabolic diseases. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

Back to TopTop