Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = pesticide-free agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 838 KiB  
Article
Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica)
by Wenlong Tong, Lizhu Wang, Bingfang Tao, Huanjing Yao, Huiping Liu, Shaokang Huang, Jianghong Li, Xiaolan Xu and Xinle Duan
Agriculture 2025, 15(15), 1590; https://doi.org/10.3390/agriculture15151590 - 24 Jul 2025
Viewed by 303
Abstract
Honey bees (Apis mellifera ligustica) are essential pollinators in both ecosystems and agricultural production. However, their populations are declining due to various factors, including pesticide exposure. Despite their importance, the reproductive castes, particularly drones, remain understudied in terms of pesticide effects. [...] Read more.
Honey bees (Apis mellifera ligustica) are essential pollinators in both ecosystems and agricultural production. However, their populations are declining due to various factors, including pesticide exposure. Despite their importance, the reproductive castes, particularly drones, remain understudied in terms of pesticide effects. To investigate the effects of azoxystrobin and picoxystrobin on honey bee drones, the drones were exposed to different concentrations of azoxystrobin and picoxystrobin for 14 days; the drone survival, body weight, nutrient content, reproductive organs, and sperm concentration were assessed. Results showed that exposure to both fungicides caused a significant reduction in drone survival rates, with survival rates decreasing progressively as the duration of exposure increased. Compared to the control group, the body weights of drones in all treatment groups were significantly lower on days 7 and 14. Nutrient analysis revealed that low concentrations of azoxystrobin and picoxystrobin increased protein levels, while free fatty acid content decreased significantly in all treatment groups. No significant changes were observed in the total carbohydrate content. Morphological examination of reproductive organs showed that the lengths of the mucus glands and seminal vesicles in drones were significantly shorter in the treatment groups compared to the control group. Furthermore, exposure to azoxystrobin and picoxystrobin resulted in a significant decline in sperm concentration in the drones. These findings indicate that azoxystrobin and picoxystrobin have adverse effects on the health and reproductive capacity of honey bee drones. The present study highlights the need to reassess the risks posed by these fungicides to pollinators, particularly given the critical role of drones in maintaining the genetic diversity and resilience of honey bee colonies. Further research is warranted to elucidate the underlying mechanisms of these effects and explore potential mitigation strategies. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Figure 1

17 pages, 444 KiB  
Systematic Review
Enhancing Public Health and SDG 3 Through Sustainable Agriculture and Tourism
by Elena Petelos, Danai Antonaki, Erasmia Angelaki, Christos Lemonakis and Garefalakis Alexandros
Sustainability 2025, 17(14), 6253; https://doi.org/10.3390/su17146253 - 8 Jul 2025
Viewed by 355
Abstract
This study explores how private sector initiatives within the tourism industry can contribute to public health outcomes and Sustainable Development Goal 3 (SDG 3) through sustainable agricultural practices. Using a mixed-methods approach that combines a systematic literature review with an in-depth case study, [...] Read more.
This study explores how private sector initiatives within the tourism industry can contribute to public health outcomes and Sustainable Development Goal 3 (SDG 3) through sustainable agricultural practices. Using a mixed-methods approach that combines a systematic literature review with an in-depth case study, the research examines how integrated strategies—such as pesticide-free farming, biodiversity enhancement, and edible landscape design—can reduce environmental health risks, improve nutritional quality, and promote local resilience. A series of sustainability interventions are analyzed using key performance indicators (KPIs) related to pesticide use, organic production, pollinator conservation, and community engagement. The findings reveal that business-led sustainability models can support systemic change when grounded in clear metrics and cross-sector collaboration. Although the absence of pre-2019 baseline data and direct health outcome measurements limit causal inference, the study provides a valuable blueprint for aligning private enterprise practices with global health and sustainability objectives. The implications are relevant for policymakers, hospitality operators, and public health stakeholders aiming to foster synergies between tourism, agriculture, and well-being. Full article
Show Figures

Figure 1

18 pages, 7674 KiB  
Article
Foliar Application of Bacillus thuringiensis Enhances Tea Quality and Plant Defense via Phyllosphere Microbiome Modulation
by Yulin Xiong, He Liu, Dongliang Li, Wei Xie, Zhong Wang, Xiaohong Fang, Jizhou Wang, Wei Chen, Xi Du, Yanyan Li, Chuanpeng Nie, Chuanhua Yin, Pumo Cai and Yongcong Hong
Agriculture 2025, 15(13), 1386; https://doi.org/10.3390/agriculture15131386 - 27 Jun 2025
Viewed by 320
Abstract
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the [...] Read more.
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the structure and function of the phyllosphere microbiome remain unclear. This study evaluated the effects of Bt spraying on tea quality, microbiome composition, diversity, and potential functions using tea leaf quality measurements and high-throughput sequencing of the 16S/ITS rDNA genes. Results showed that spraying Bt1 significantly increased the contents of free amino acids (by 15.27%), flavonoids (by 18.00%), soluble sugars (by 62.55%), and key compounds such as epicatechin gallate (by 10.50%), gallocatechin gallate (by 122.52%), and epigallocatechin gallate (by 61.29%), leading to improved leaf quality. Co-occurrence network analysis indicated that the community structure of both epiphytic and endophytic microbes became more complex after Bt treatment. The abundance of beneficial bacteria, such as Novosphingobium, Methylobacterium, and Sphingomonas, increased significantly, while pathogenic fungi like Aspergillus and Phyllosticta decreased. Functional prediction indicated enhanced amino acid metabolism, secondary metabolism, and carbohydrate metabolism, particularly the biosynthesis of flavonoids, which supports disease resistance and boosts secondary metabolite levels. Furthermore, Bt application reduced pathogenic fungi, enhancing the tea plant’s resistance to diseases. Overall, foliar spraying of Bt can positively alter the phyllosphere microbiome by enriching beneficial bacteria and improving metabolic functions, ultimately enhancing tea plant resistance and quality, and providing a scientific basis for sustainable pest management in tea cultivation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

17 pages, 2381 KiB  
Article
Wettability of the Plant Growth Regulator 28-HB on Pepper Leaves at Different Developmental Stages
by Xiaoya Dong, Kaiyuan Wang, Zhouming Gao, Cuicui Zhu, Xianping Guan and Baijing Qiu
Horticulturae 2025, 11(6), 661; https://doi.org/10.3390/horticulturae11060661 - 10 Jun 2025
Viewed by 365
Abstract
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of [...] Read more.
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of pepper leaves at the seedling, early flowering, and fruiting stages. The microstructure of the leaf surface was characterized using an ultra-depth field microscope. The surface free energy (SFE) of the leaves was calculated using the Owens-Wendt-Rabel-Kaelble (OWRK) method. Additionally, the surface tension of the 28-HB solutions containing various surfactants, as well as the contact angles on pepper leaves at different growth stages, were measured. The experimental results indicate that the surface free energy (SFE) of pepper leaves significantly decreases with plant maturation. Specifically, the SFE of the adaxial leaf surface declined from 43.4 mJ/m2 at the seedling stage to 26.6 mJ/m2 at the fruiting stage, while the abaxial surface decreased from 27.5 mJ/m2 to 22.5 mJ/m2. At all growth stages, the relative polar component (RP) of the adaxial surface was consistently higher than that of the abaxial surface and showed a gradual decline from 94.70% to 57.34% as development progressed. The contact angle measurement showed that the addition of surfactant decreased the contact angle of 28-HB on the leaf surface and increased the wetting area. Among the tested formulations, the addition of fatty alcohol ethoxylates (AEO-9) significantly reduced the contact angle to below 45°, and resulted in an adhesion tension below 30 mN/m and adhesion work lower than 105 mJ/m2. These values indicate superior wetting performance compared to formulations containing sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). This study integrates the surface free energy characteristics of pepper leaves at different growth stages with the wetting performance of various surfactant systems, providing a quantitative basis for the selection and optimization of surfactants in agricultural spray formulations. The findings offer theoretical support for precise pesticide application strategies, enhancing pesticide adhesion and absorption on leaf surfaces, thereby improving pesticide utilization efficiency throughout the crop growth cycle. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

15 pages, 4266 KiB  
Article
Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation
by Zhenhua Li, Aoyun Meng, Wen Li, Guoyuan Xiong, Mingfu Ye, Yaqiang Meng and Zhen Li
Catalysts 2025, 15(6), 564; https://doi.org/10.3390/catal15060564 - 5 Jun 2025
Viewed by 506
Abstract
The design of efficient and stable visible-light-driven photocatalysts is paramount for sustainable hydrogen (H2) evolution and the degradation of organophosphorus pesticides, exemplified by dichlorvos (DDVP). In this work, we synthesized a co-catalyst-free nanocomposite photocatalyst composed of Al6Si2O [...] Read more.
The design of efficient and stable visible-light-driven photocatalysts is paramount for sustainable hydrogen (H2) evolution and the degradation of organophosphorus pesticides, exemplified by dichlorvos (DDVP). In this work, we synthesized a co-catalyst-free nanocomposite photocatalyst composed of Al6Si2O13 (ASO) and Cd8.05Zn1.95S10 (ZCS). By constructing a Type-I heterojunction, the optimized ASO/ZCS-1 nanocomposite (ASO loading ratio: 30%) enhanced visible-light-driven H2 evolution activity (5.1 mmol g−1 h−1), nearly doubling that of pristine ZCS (2.7 mmol g−1 h−1). Stability assessments revealed catalytic durability for ASO/ZCS-1 over five successive cycles, whereas the activity of pure ZCS precipitously declined to 59.7% of its initial level. Additionally, ASO, ZCS, and ASO/ZCS-2 (ASO loading ratio: 50%) demonstrated notable photocatalytic efficiency toward DDVP degradation without any co-catalyst, reducing DDVP concentration to 56.2% (ASO), 18.9% (ASO/ZCS-2), and 38.4% (ZCS), with corresponding degradation stability of 93.8%, 95.1%, and 93.8%, respectively. These results underscore the superior photocatalytic activity and stability of ASO, ZCS, and ASO/ZCS in the remediation of organophosphorus pesticides, with the Type-I heterojunction structure of ASO/ZCS enhancing both degradation activity and stability. Comprehensive characterizations by X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and differential charge density analyses verified the Type-I heterojunction charge-transfer mechanism, effectively suppressing charge recombination and thus improving photocatalytic performance. Consequently, ASO/ZCS nanocomposites exhibit significant promise for broad applications in sustainable H2 production, pollutant degradation, and ensuring food and agricultural product safety. Full article
(This article belongs to the Special Issue Recent Developments in Photocatalytic Hydrogen Production)
Show Figures

Graphical abstract

11 pages, 626 KiB  
Article
Neem Oil: A Comprehensive Analysis of Quality and Identity Parameters
by Vitor Emanuel de Souza Gomes, Paula Fernanda Janetti Bócoli, Julia Guirardello Iamarino, Renato Grimaldi, Ana Paula Badan Ribeiro and Luís Marangoni Júnior
Lipidology 2025, 2(2), 9; https://doi.org/10.3390/lipidology2020009 - 7 May 2025
Cited by 1 | Viewed by 1278
Abstract
Background: Neem seed oil (Azadirachta indica A. Juss) is widely used in the pharmaceutical, agricultural, and food industries due to its antiseptic, fungicidal, pesticidal, and antioxidant properties, attributed to over 300 bioactive compounds and a high content of unsaturated fatty acids. Methods: [...] Read more.
Background: Neem seed oil (Azadirachta indica A. Juss) is widely used in the pharmaceutical, agricultural, and food industries due to its antiseptic, fungicidal, pesticidal, and antioxidant properties, attributed to over 300 bioactive compounds and a high content of unsaturated fatty acids. Methods: This study aimed to characterize a commercial sample of neem oil regarding its physicochemical properties and identity profile, using official methodologies from the American Oil Chemists’ Society (AOCS), and to compare the results with literature data. Results: The sample exhibited the following parameters: free fatty acids (2.0 ± 0.02%), acidity index (3.9 ± 0.04 mg KOH/g), peroxide value (3.2 ± 0.1 mEq/kg), iodine value (116 ± 12 g I2/100 g), and saponification index (198 ± 8 mg KOH/g). The predominant coloration was yellowish, with total chlorophyll and carotenoid levels below the equipment’s quantification limits. Fatty acid composition was mainly long-chain (C16–C18), with notable levels of linoleic acid (46%), oleic acid (28%), palmitic acid (12%), linolenic acid (5.5%), and stearic acid (4.1%). The triacylglycerol profile showed a predominance of triunsaturated (51%) and diunsaturated species (41%). Differential scanning calorimetry (DSC) analysis revealed crystallization events between −6 °C and −57 °C and fusion events between −44 °C and −1 °C, consistent with the high unsaturation level of the lipids. Conclusions: The analyzed neem oil sample meets quality and identity criteria, making it suitable for various industrial applications. The characterization confirms its potential and aligns with literature data, emphasizing its relevance for industrial use. Full article
(This article belongs to the Special Issue Technologies and Quality Control of Lipid-Based Foods)
Show Figures

Figure 1

16 pages, 3401 KiB  
Article
Biochar-Enhanced Sulfur: Mechanistic Insights into a Novel and Effective Bactericide
by Yuanqi Peng, Lezhu Su, Meng Liu, Chen Zeng, Bo Xiang, Zhuoyao Xie, Zijing Hu and Nan Zhou
Nanomaterials 2025, 15(9), 697; https://doi.org/10.3390/nano15090697 - 6 May 2025
Viewed by 535
Abstract
The development of green, efficient, and stable pesticides for controlling agricultural pathogens remains a critical research focus. Elemental sulfur, although widely used for its bactericidal and insecticidal properties, suffers from aggregation, poor dispersibility, and limited contact with target organisms, restricting its effectiveness. In [...] Read more.
The development of green, efficient, and stable pesticides for controlling agricultural pathogens remains a critical research focus. Elemental sulfur, although widely used for its bactericidal and insecticidal properties, suffers from aggregation, poor dispersibility, and limited contact with target organisms, restricting its effectiveness. In this study, we synthesized a novel biochar–sulfur composite by combining sustainable biochar with sulfur at low temperatures. The resulting material exhibited enhanced dispersibility and a five-fold increase in bactericidal efficacy compared to sulfur alone, as demonstrated in tests against R. solanacearum and E. coli. Additionally, the composite maintained 80% efficacy after five cycles of use, highlighting its favorable cyclic performance. Mechanistic studies revealed that biochar accelerates sulfur’s redox reaction, generating free radicals that drive efficient bactericidal action. This work provides a simple and sustainable approach for developing sulfur-based antimicrobial pesticides, offering new opportunities for sulfur utilization in agriculture. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Graphical abstract

12 pages, 235 KiB  
Article
Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals
by Huanhuan Zhang, Bo Zhang, Huagang He, Lulu Zhang, Xinkang Hu and Chundu Wu
Foods 2025, 14(7), 1236; https://doi.org/10.3390/foods14071236 - 1 Apr 2025
Viewed by 528
Abstract
Wheat plays a crucial role in global food security; however, in recent years, Fusarium Head Blight (FHB) has severely impacted both wheat yield and quality. Strong oxidative free radicals, with high oxidation potential and rapid reaction rates, offer an effective approach for pollutant [...] Read more.
Wheat plays a crucial role in global food security; however, in recent years, Fusarium Head Blight (FHB) has severely impacted both wheat yield and quality. Strong oxidative free radicals, with high oxidation potential and rapid reaction rates, offer an effective approach for pollutant degradation and microbial inactivation. In this study, the control effect of strong oxidizing radicals on FHB was evaluated by comparing the untreated control group (JM23), which was infected with FHB, to the experimental group (FG06), which was treated with strong oxidizing radicals following FHB infection. The results show that FG06 achieved a control effectiveness of 87.87%. The study also assessed grain characteristics and milling quality. Statistical analysis revealed that FG06 had a slightly lower flour extraction rate (71.24%) compared to the control wheat (JM23), but it exhibited competitive flour whiteness (81.30) and a gluten index of 85.50%. The dough stability at 10 min was 27.00 FE, while several gelatinization parameters were significantly lower than JM23. However, FG06 had higher protein content (10.94%), flour protein content (10.70%), ash content (0.58%), wet gluten content (28.70%), dry gluten content (9.40%), and sedimentation value (73.00 mL), all significantly higher than those of JM23. Additionally, FG06 had a gelatinization temperature of 68.61 °C, similar to JM23. Overall, Strong oxidizing radicals as an alternative to conventional pesticides not only effectively controls FHB but also maintains or even enhances wheat milling and processing quality, promoting more sustainable agricultural practices. Full article
(This article belongs to the Special Issue Fusarium Species and Their Mycotoxins in Cereal Food)
23 pages, 6246 KiB  
Article
Comprehensive Raman Fingerprinting and Machine Learning-Based Classification of 14 Pesticides Using a 785 nm Custom Raman Instrument
by Meral Yüce, Nazlı Öncer, Ceren Duru Çınar, Beyza Nur Günaydın, Zeynep İdil Akçora and Hasan Kurt
Biosensors 2025, 15(3), 168; https://doi.org/10.3390/bios15030168 - 5 Mar 2025
Viewed by 1394
Abstract
Raman spectroscopy enables fast, label-free, qualitative, and quantitative observation of the physical and chemical properties of various substances. Here, we present a 785 nm custom-built Raman spectroscopy instrument designed for sensing applications in the 400–1700 cm−1 spectral range. We demonstrate the performance [...] Read more.
Raman spectroscopy enables fast, label-free, qualitative, and quantitative observation of the physical and chemical properties of various substances. Here, we present a 785 nm custom-built Raman spectroscopy instrument designed for sensing applications in the 400–1700 cm−1 spectral range. We demonstrate the performance of the instrument by fingerprinting 14 pesticide reference samples with over twenty technical repeats per sample. We present molecular Raman fingerprints of the pesticides comprehensively and distinguish similarities and differences among them using multivariate analysis and machine learning techniques. The same pesticides were additionally investigated using a commercial 532 nm Raman instrument to see the potential variations in peak shifts and intensities. We developed a unique Raman fingerprint library for 14 reference pesticides, which is comprehensively documented in this study for the first time. The comparison shows the importance of selecting an appropriate excitation wavelength based on the target analyte. While 532 nm may be advantageous for certain compounds due to resonance enhancement, 785 nm is generally more effective for reducing fluorescence and achieving clearer Raman spectra. By employing machine learning techniques like the Random Forest Classifier, the study automates the classification of 14 different pesticides, streamlining data interpretation for non-experts. Applying such combined techniques to a wider range of agricultural chemicals, clinical biomarkers, or pollutants could provide an impetus to develop monitoring technologies in food safety, diagnostics, and cross-industry quality control applications. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

31 pages, 1957 KiB  
Article
Overcoming Barriers to the Adoption of Decision Support Systems in Integrated Pest Management in Some European Countries
by Jurij Marinko, Vladimir Kuzmanovski, Mark Ramsden and Marko Debeljak
Agronomy 2025, 15(2), 426; https://doi.org/10.3390/agronomy15020426 - 8 Feb 2025
Viewed by 1378
Abstract
Decision support systems (DSSs) can improve decision making in integrated pest management (IPM), but are still underutilised despite proven environmental and economic benefits. To overcome the barriers to DSS adoption, this study analyses survey data from 31 farmers and 94 farm advisors, researchers [...] Read more.
Decision support systems (DSSs) can improve decision making in integrated pest management (IPM), but are still underutilised despite proven environmental and economic benefits. To overcome the barriers to DSS adoption, this study analyses survey data from 31 farmers and 94 farm advisors, researchers and developers across 11 European countries. Using machine learning techniques, respondents were first categorised into clusters based on their responses to the questionnaire. The clusters were then explained using classification trees. For each cluster, customised approaches were proposed to overcome the barriers to DSS adoption. For farmers, these include building trust through co-development, offering free trials, organising practical workshops and providing clear instructions for use. For farm advisors and researchers, involvement in the development of DSS and giving them access to information about the characteristics of the DSS is crucial. IPM DSS developers should focus on 14 key recommendations to improve trust and the ease of use, increase the transparency of DSS descriptions and validation, and extend development to underserved sectors such as viticulture and vegetable farming. These recommendations aim to increase the uptake of DSSs to ultimately improve the implementation of IPM practises and help reduce the risk and use of pesticides across Europe despite the ever-growing challenges in agriculture. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

23 pages, 1657 KiB  
Article
Impact of Digital Literacy on Farmers’ Adoption Behaviors of Green Production Technologies
by Haoyuan Liu, Zhe Chen, Suyue Wen, Jizhou Zhang and Xianli Xia
Agriculture 2025, 15(3), 303; https://doi.org/10.3390/agriculture15030303 - 30 Jan 2025
Cited by 4 | Viewed by 2639
Abstract
The application of digital technology offers new opportunities to promote the green transformation and upgrading of agriculture. Farmers’ digital literacy, as a critical link between digital technology and agricultural green development, significantly influences their production decisions. Whether digital literacy serves as an enabling [...] Read more.
The application of digital technology offers new opportunities to promote the green transformation and upgrading of agriculture. Farmers’ digital literacy, as a critical link between digital technology and agricultural green development, significantly influences their production decisions. Whether digital literacy serves as an enabling factor driving farmers’ adoption of agricultural green production technologies warrants further exploration. This paper uses the entropy method to measure farmers’ digital literacy levels and employs a Probit model for empirical analysis of survey data from 643 farmers in Shandong and Shaanxi provinces, examining how farmers’ digital literacy influences their adoption of green production technologies. The baseline regression result indicates that digital literacy can significantly increase farmers’ adoption of green production technologies. A mechanism analysis reveals that enhanced farmers’ digital literacy promotes the adoption of green production technologies through three pathways: enhancing farmers’ risk perception, expanding farmers’ digital social capital, and strengthening the effectiveness of technology promotion. Heterogeneity analysis demonstrates that improved digital literacy significantly enhances the adoption of four technologies—water-saving irrigation, pest control, pollution-free pesticide, and straw return to fields—and exerts a stronger impact on large-scale and middle-generation farmers. Accordingly, this study suggests improving digital village infrastructure, enhancing farmers’ digital literacy comprehensively, and formulating differentiated extension policies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

19 pages, 2204 KiB  
Review
Bibliometric Analysis on Graphitic Carbon Nitride (g-C3N4) as Photocatalyst for the Remediation of Water Polluted with Contaminants of Emerging Concern
by José M. Veiga-del-Baño, Gabriel Pérez-Lucas, Pedro Andreo-Martínez and Simón Navarro
Catalysts 2025, 15(2), 115; https://doi.org/10.3390/catal15020115 - 24 Jan 2025
Cited by 1 | Viewed by 902
Abstract
Carbon nitrides are polymeric materials with a broad range of applications, including photocatalysis. Among them, graphitic carbon nitride (g-C3N4), a low-cost material, is an excellent photocatalyst under visible light irradiation owing to its features such as correct band positions, [...] Read more.
Carbon nitrides are polymeric materials with a broad range of applications, including photocatalysis. Among them, graphitic carbon nitride (g-C3N4), a low-cost material, is an excellent photocatalyst under visible light irradiation owing to its features such as correct band positions, high stability and non-toxicity. g-C3N4 is a metal-free material that is easily synthesized by polymerizing nitrogen-rich compounds and is an efficient heterogeneous catalyst for many reaction procedures due to its distinctive electronic structure and the benefits of the mesoporous texture. In addition, in situ or post-modification of g-C3N4 can further improve catalytic performance or expand its application for remediating environmental pollution. Water pollution from organic compounds such as pesticides and pharmaceuticals is increasing dramatically and is becoming a serious problem around the world. These pollutants enter water supplies in a variety of ways, including industrial and hospital wastewater, agricultural runoff, and chemical use. To solve this problem, photocatalysis is a promising technology. Without the use of other oxidative chemicals, g-C3N4 uses renewable solar energy to transform harmful pollutants into harmless products. As a result, much recent research has focused on the photocatalytic activity of g-C3N4 for wastewater treatment. For this reason, the main objective of this paper is to contribute a chronological overview of the bibliometrics on g-C3N4 for the removal of pesticides and pharmaceuticals from water using the tools BibExcel, Bibliometrix and R-Studio IDE. A bibliometric analysis was performed using the Science Citation Index Expanded (WoS©) database to analyze the scientific literature published in the field over the last 10 years. The results were used to identify limitations and guide future research. Full article
Show Figures

Figure 1

16 pages, 5532 KiB  
Brief Report
Whole-Genome Sequencing of Peribacillus frigoritolerans Strain d21.2 Isolated in the Republic of Dagestan, Russia
by Maria N. Romanenko, Anton E. Shikov, Iuliia A. Savina, Anton A. Nizhnikov and Kirill S. Antonets
Microorganisms 2024, 12(12), 2410; https://doi.org/10.3390/microorganisms12122410 - 24 Nov 2024
Viewed by 1764
Abstract
Pesticide-free agriculture is a fundamental pillar of environmentally friendly agriculture. To this end, there is an active search for new bacterial strains capable of synthesizing secondary metabolites and toxins that protect crops from pathogens and pests. In this study, we isolated a novel [...] Read more.
Pesticide-free agriculture is a fundamental pillar of environmentally friendly agriculture. To this end, there is an active search for new bacterial strains capable of synthesizing secondary metabolites and toxins that protect crops from pathogens and pests. In this study, we isolated a novel strain d21.2 of Peribacillus frigoritolerans from a soil sample collected in the Republic of Dagestan, Russia. Leveraging several bioinformatic approaches on Illumina-based whole-genome assembly, we revealed that the strain harbors certain insecticidal loci (coding for putative homologs of Bmp and Vpa) and also contains multiple BGCs (biosynthetic gene clusters), including paeninodin, koranimine, schizokinen, and fengycin. In total, 21 BGCs were predicted as synthesizing metabolites with bactericidal and/or fungicidal effects. Importantly, by applying a re-scaffolding pipeline, we managed to robustly predict MGEs (mobile genetic elements) associated with BGCs, implying high genetic plasticity. In addition, the d21.2’s genome was free from genes encoding for enteric toxins, implying its safety in use. A comparison with available genomes of the Peribacillus frigoritolerans strain revealed that the strain described here contains more functionally important loci than other members of the species. Therefore, strain d21.2 holds potential for use in agriculture due to the probable manifestation of bactericidal, fungicidal, growth-stimulating, and other useful properties. The assembled genome is available in the NCBI GeneBank under ASM4106054v1. Full article
(This article belongs to the Special Issue Agriculture-Related Microorganisms and Carbon Cycle)
Show Figures

Figure 1

18 pages, 2425 KiB  
Article
Isothiocyanate-Based Microemulsions Loaded into Biocompatible Hydrogels as Innovative Biofumigants for Agricultural Soils
by Michele Baglioni, Ilaria Clemente, Gabriella Tamasi, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Mariangela Gentile and Claudio Rossi
Molecules 2024, 29(16), 3935; https://doi.org/10.3390/molecules29163935 - 21 Aug 2024
Viewed by 1465
Abstract
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative [...] Read more.
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV–Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles’ release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 3rd Edition)
Show Figures

Graphical abstract

10 pages, 674 KiB  
Article
An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions
by Michele Ciriello, Emanuela Campana, Giuseppe Colla and Youssef Rouphael
Plants 2024, 13(10), 1326; https://doi.org/10.3390/plants13101326 - 11 May 2024
Cited by 4 | Viewed by 1183
Abstract
Modern agriculture urgently requires viable alternatives to synthetic chemical substances, such as pesticides and fertilizers, to comply with new and stringent international regulations and meet the growing demands of consumers who prefer chemical-free food. Consequently, organic agriculture has garnered increasing interest over time. [...] Read more.
Modern agriculture urgently requires viable alternatives to synthetic chemical substances, such as pesticides and fertilizers, to comply with new and stringent international regulations and meet the growing demands of consumers who prefer chemical-free food. Consequently, organic agriculture has garnered increasing interest over time. To compensate for yield reduction resulting from opting out of the use mineral fertilizers, research has focused on the use of biostimulants to sustain the productivity of horticultural crops. To this end, a greenhouse experiment was conducted to assess the effects of three nonmicrobial biostimulants (a plant extract, vegetable protein hydrolysate, and a seaweed extract) and an untreated control on the production and mineral content of wild rocket (Diplotaxis tenuifolia (L.) DC.) cultivated under organic conditions and harvested three times during the growth cycle. In general, the nitrate content, which defines the commercial quality of wild rocket, was not influenced by the application of biostimulants. At each harvest, the application of biostimulants resulted in improved production performance, although this was not always accompanied by an increase in mineral content. Specifically, the best results were obtained with the use of plant-derived protein hydrolysate and plant extract, which led to an improvement in total yield of 32.1% and 27.2%, respectively compared to that of control plants. These results reconfirm that biostimulants represent a valid and indispensable tool for organic growers. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Plant Physiology and Metabolic Profile)
Show Figures

Figure 1

Back to TopTop