Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica)
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungicides and Reagents
2.2. Maintenance of Drones
2.3. Fungicide Exposure
2.4. Detection of Nutrients in Drones
2.5. Length of Mucus Glands and Seminal Vesicles
2.6. Sperm Concentration Detection
2.7. Data Analysis
3. Results
3.1. Effect of Azoxystrobin and Picoxystrobin Exposure on the Survival Rate of Drones
3.2. Effect of Azoxystrobin and Picoxystrobin Exposure on the Body Weight of Drones
3.3. Effect of Azoxystrobin and Picoxystrobin Exposure on the Nutrient Content in Drones
3.4. Effect of Azoxystrobin and Picoxystrobin Exposure on the Mucus Glands and Seminal Vesicles in Drones
3.5. Effect of Azoxystrobin and Picoxystrobin Exposure on Sperm Concentration in Drones
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Xiong, M.Q.; Qin, G.; Wang, L.Z.; Wang, R.Y.; Zhou, R.Q.; Luo, X.T.; Lou, Q.; Huang, S.K.; Li, J.H.; Duan, X.L. Field recommended concentrations of pyraclostrobin exposure disturb the development and immune response of worker bees (Apis mellifera L.) larvae and pupae. Front. Physiol. 2023, 14, 1137264. [Google Scholar] [CrossRef]
- Requier, F.; Pérez-Méndez, N.; Andersson, G.K.S.; Blareau, E.; Merle, I.; Garibaldi, L.A. Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 2023, 38, 196–205. [Google Scholar] [CrossRef]
- Duan, X.; Wang, L.; Wang, R.; Xiong, M.; Qin, G.; Huang, S.; Li, J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. Ecotoxicol. Environ. Saf. 2024, 269, 115754. [Google Scholar] [CrossRef]
- Patir, A.; Raper, A.; Fleming, R.; Henderson, B.E.P.; Murphy, L.; Henderson, N.C.; Clark, E.L.; Freeman, T.C.; Barnett, M.W. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: A single cell transcriptomics analysis. G3 2023, 13, jkad178. [Google Scholar] [CrossRef]
- Powney, G.D.; Carvell, C.; Edwards, M.; Morris, R.K.A.; Roy, H.E.; Woodcock, B.A.; Isaac, N.J.B. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1018. [Google Scholar] [CrossRef]
- Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Kolari, E.; Maitip, J.; Vidondo, B.; Neumann, P.; Williams, G.R. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J. Appl. Ecol. 2021, 58, 2515–2528. [Google Scholar] [CrossRef]
- Fischer, N.; Costa, C.P.; Hur, M.; Kirkwood, J.S.; Woodard, S.H. Impacts of neonicotinoid insecticides on bumble bee energy metabolism are revealed under nectar starvation. Sci. Total Environ. 2024, 912, 169388. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Yao, H.; Tong, W.; Xiong, M.; Huang, S.; Li, J. Azoxystrobin exposure impacts on development status and physiological responses of worker bees (Apis mellifera L.) from larval to pupal stages. Int. J. Mol. Sci. 2024, 25, 11806. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.L.; Tong, W.L.; Tao, B.F.; Yao, H.J.; Xiong, M.Q.; Liu, H.P.; Huang, S.K.; Li, J.H. Azoxystrobin-induced physiological and biochemical alterations in Apis mellifera workers of different ages. Insects 2025, 16, 449. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.E.; Barron, A.B. Epigenetics and the evolution of instincts. Science 2017, 356, 26–27. [Google Scholar] [CrossRef]
- Flottum, K. The Backyard Beekeeper: An Absolute Beginner’s Guide to Keeping Bees in Your Yard and Garden, 4th ed.; Quarry Books: Beverly, MA, USA, 2018. [Google Scholar]
- Rangel, J.; Fisher, A. Factors affecting the reproductive health of honey bee (Apis mellifera) drones-A review. Apidologie 2019, 50, 759–778. [Google Scholar] [CrossRef]
- Zhao, H.; Mashilingi, S.K.; Liu, Y.; An, J. Factors influencing the reproductive ability of male bees: Current knowledge and further directions. Insects 2021, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Amiri, E.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects 2017, 8, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef]
- Locke, S.J.; Peng, Y.S. The effects of drone age, semen storage and contamination on semen quality in the honey bee (Apis mellifera). Physiol. Entomol. 1993, 18, 144–148. [Google Scholar] [CrossRef]
- Stürup, M.; Baer-Inhoof, B.; Nash, D.R.; Boomsma, J.J.; Baer, B. When every sperm counts: Factors affecting male fertility in the honey bee Apis mellifera. Behav. Ecol. 2013, 24, 1192–1198. [Google Scholar] [CrossRef]
- Czekońska, K.; Chuda-Mickiewicz, B.; Chorbiski, P. The influence of age of honey bee (Apis mellifera) drones on volume of semen and viability of spermatozoa. J. Apic. Sci. 2013, 57, 61–66. [Google Scholar] [CrossRef]
- Jaycox, E.R. The effects of various foods and temperatures on sexual maturity of the drone honey bee (Apis mellifera). Ann. Entomol. Soc. Am. 1961, 54, 519–523. [Google Scholar] [CrossRef]
- Bieńkowska, M.; Panasiuk, B.; Węgryznowicz, P.; Gerula, D. The effect of different thermal conditions on drone semen quality and number of spermatozoa entering the spermatheca of queen bee. J. Apic. Sci. 2011, 55, 161–168. [Google Scholar]
- Rousseau, A.; Giovenazzo, P. Optimizing drone fertility with spring nutritional supplements to honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 2016, 109, 1009–1014. [Google Scholar] [CrossRef]
- Czekońska, K.; Szentgyörgyi, H.; Tofilski, A. Body mass but not wing size or symmetry correlates with life span of honey bee drones. Bull. Entomol. Res. 2018, 109, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.S.; Martínez, L.C.; Cossolin, J.F.S.; Resende, M.T.C.S.; Carneiro, L.S.; Fiaz, M.; Serrão, J.E. The fungicide azoxystrobin causes histopathological and cytotoxic changes in the midgut of the honey bee Apis mellifera (Hymenoptera: Apidae). Ecotoxicology 2023, 32, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Conradie, T.A.; Lawson, K.; Allsopp, M.; Jacobs, K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol. Res. 2024, 280, 127587. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Feng, W.; Li, H.; Wu, Y.; Dai, P.L.; Liu, Y.J. Combined effects of microplastics and flupyradifurone on gut microbiota and oxidative status of honeybees (Apis mellifera L.). Environ. Res. 2025, 270, 121026. [Google Scholar] [CrossRef]
- Bruckner, S.; Straub, L.; Neumann, P.; Williams, G.R. Synergistic and antagonistic interactions between Varroa destructor mites and neonicotinoid insecticides in male Apis mellifera Honey Bees. Front. Ecol. Evol. 2021, 9, 756027. [Google Scholar] [CrossRef]
- Friedli, A.; Williams, G.R.; Bruckner, S.; Neumann, P.; Straub, L. The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. Chemosphere 2020, 242, 125145. [Google Scholar] [CrossRef]
- McAfee, A.; Metz, B.N.; Milone, J.P.; Foster, L.J.; Tarpy, D.R. Drone honey bees are disproportionately sensitive to abiotic stressors despite expressing high levels of stress response proteins. Commun. Biol. 2022, 5, 141. [Google Scholar] [CrossRef]
- Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Gauthier, L.; Khongphinitbunjong, K.; Retschnig, G.; Troxler, A.; Vidondo, B.; Neumann, P.; et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B: Biol. Sci. 2016, 283, 20160506. [Google Scholar] [CrossRef]
- Ciereszko, A.; Wilde, J.; Dietrich, G.J.; Siuda, M.; Bąk, B.; Judycka, S.; Karol, H. Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 2017, 48, 211–222. [Google Scholar] [CrossRef]
- Kairo, G.; Provost, B.; Tchamitchian, S.; Ben Abdelkader, F.; Bonnet, M.; Cousin, M.; Sénéchal, J.; Benet, P.; Kretzschmar, A.; Belzunces, L.P.; et al. Drone exposure to the systemic insecticide fipronil indirectly impairs queen reproductive potential. Sci. Rep. 2016, 6, 31904. [Google Scholar] [CrossRef]
- Hoopman, A.; North, H.; Rajamohan, A.; Bowsher, J. Toxicity assessment of glyphosate on honeybee (Apis mellifera) spermatozoa. In Proceedings of the Society for Integrative & Comparative Biology (SCIB) Annual Meeting, San Francisco, CA, USA, 3–7 January 2018; pp. 2–21. [Google Scholar]
- Fisher, A., II; Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE 2018, 13, e0208630. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Sandstrom, M.W.; Kuivila, K.M.; Kolpin, D.W.; Meyer, M.T. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water Air Soil Pollut. 2011, 218, 307–322. [Google Scholar] [CrossRef]
- Han, Y.N.; Zhu, L.S.; Wang, J.H.; Wang, J.; Xie, H.; Zhang, S.M. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin. Ecotoxicol. Environ. Saf. 2014, 107, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Schnug, L.; Ergon, T.; Jakob, L.; Scott-Fordsmand, J.J.; Joner, E.J.; Leinaas, H.P. Responses of earthworms to repeated exposure to three biocides applied singly and as a mixture in an agricultural field. Sci. Total Environ. 2015 505, 223–235. [CrossRef]
- Jia, W.; Mao, L.; Zhang, L.; Zhang, Y.; Jiang, H. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). Chemosphere 2018, 207, 573–580. [Google Scholar] [CrossRef]
- Batista, A.C.C.; Domingues, E.D.C.; Costa, M.J.; Silva-Zacarin, E.C.M. Is a strobilurin fungicide capable of inducing histopathological effects on the midgut and Malpighian tubules of honey bees? J. Apic. Res. 2020, 59, 834–843. [Google Scholar] [CrossRef]
- Duan, X.L.; Wang, R.Y.; Xiong, M.Q.; Wang, L.Z.; Qin, G.; Huang, S.K.; Li, J.H. Effects of picoxystrobin on the development and immune response of Italian honey bee Apis mellifera ligustica larvae. J. Plant Protec. 2024, 51, 432–441. (In Chinese) [Google Scholar]
- Ruttner, F. The life and flight activity of drones. Bee World 1966, 47, 93–100. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Metz, B.N.; Tarpy, D.R. Reproductive and morphological quality of commercial honey bee (Hymenoptera: Apidae) drones in the United States. J. Insect Sci. 2021, 21, 2. [Google Scholar] [CrossRef]
- Domingues, C.E.C.; Abdalla, F.C.; Balsamo, P.J.; Pereira, B.V.R.; Hausen, M.A.; Costa, M.J.; Silva-Zacarin, E.C.M. Thiamethoxam and picoxystrobin reduce the survival and overload the hepato-nephrocitic system of the Africanized honeybee. Chemosphere 2017, 186, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Than, K.K.; Kwon, Y.J. Copulation duration of bumblebee Bombus terrestris (Hymenoptera: Apidae): Impacts on polyandry and colony parameters. J. Asia-Pac. Entomol. 2009, 12, 141–144. [Google Scholar] [CrossRef]
- Medina, M.; Vallejo, C.G. The contents of proteins, carbohydrates, lipids and DNA during the embryogenesis of Drosophila. Int. J. Dev. Biol. 1989, 33, 403–405. [Google Scholar]
- Deans, C.A.; Behmer, S.T.; Tessnow, A.E.; Tamez-Guerra, P.; Pusztai-Carey, M.; Sword, G.A. Nutrition affects insect susceptibility to Bt toxins. Sci. Rep. 2017, 7, 39705. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Habermehl, C.; Jiang, L. Metabolomic analysis of honey bee (Apis mellifera L.) response to glyphosate exposure. Mol. Omics. 2022, 18, 635–642. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Wu, K. Biological characteristics and energy metabolism of migrating insects. Metabolites 2023, 13, 439. [Google Scholar] [CrossRef]
- Wilson, J.K.; Ruiz, L.; Davidowitz, G. Dietary protein and carbohydrates affect immune function and performance in a specialist herbivore insect (Manduca sexta). Physiol. Biochem. Zool. 2019, 92, 58–70. [Google Scholar] [CrossRef]
- Johnson, R.M. Honey Bee Toxicology. Ann. Rev. Entomol. 2015, 60, 415–434. [Google Scholar] [CrossRef]
- Gong, Y.H.; Diao, Q.Y. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 2017, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Manning, R. Fatty acids in pollen: A review of their importance for honey bees. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Boguś, M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021, 9, e12563. [Google Scholar] [CrossRef]
- Huang, M.; Dong, J.; Yang, S.; Xiao, M.; Guo, H.; Zhang, J.; Wang, D. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). Sci. Total Environ. 2023, 868, 161637. [Google Scholar] [CrossRef] [PubMed]
- Arien, Y.; Dag, A.; Shafir, S. Omega-6:3 Ratio More Than Absolute Lipid Level in Diet Affects Associative Learning in Honey Bees. Front. Psychol. 2018, 9, 1001. [Google Scholar] [CrossRef]
- Domínguez, E.; Giardini, P.M.; Quintana, S.; Moliné, M.D.; Chierichetti, M.; Medici, S.K.; Gende, L.B.; Damiani, N. Fatty acid profile of Apis mellifera workers in the face of an immune challenge. Apidologie 2024, 55, 15. [Google Scholar] [CrossRef]
- Lee, F.J.; Miller, K.I.; McKinlay, J.B.; Newton, I.L.G. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol. Ecol. 2018, 94, fiy113. [Google Scholar] [CrossRef]
- Quinlan, G.; Döke, M.A.; Ortiz-Alvarado, Y.; Rodriguez-Gomez, N.; Koru, Y.B.; Underwood, R. Carbohydrate nutrition associated with health of overwintering honey bees. J. Insect Sci. 2023, 23, 16. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef]
- Arnqvist, G.; Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 2000, 60, 145–164. [Google Scholar] [CrossRef]
- García-González, F.; Simmons, L.W. Sperm viability matters in insect sperm competition. Curr. Biol. 2005, 15, 271–275. [Google Scholar] [CrossRef] [PubMed]
- den Boer, S.P.; Boomsma, J.J.; Baer, B. Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J. Insect Physiol. 2009, 55, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Williams, V.; Evans, J.D. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol. Biol. 2004, 13, 141–146. [Google Scholar] [CrossRef]
- Baer, B.; Heazlewood, J.L.; Taylor, N.L.; Eubel, H.; Millar, A.H. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 2009, 9, 2085–2097. [Google Scholar] [CrossRef]
- Boomsma, J.; Baer, B.; Heinze, J. The evolution of male traits in social insects. Annu. Rev. Entomol. 2005, 50, 395–420. [Google Scholar] [CrossRef]
- King, M.; Eubel, H.; Millar, A.H.; Baer, B. Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. J. Insect Physiol. 2011, 57, 409–414. [Google Scholar] [CrossRef]
- Colonello-Frattini, N.A.; Hartfelder, K. Differential gene expression profiling in mucus glands of honey bee (Apis mellifera) drones during sexual maturation. Apidologie 2009, 40, 481–495. [Google Scholar] [CrossRef]
- Gorshkov, V.; Blenau, W.; Koeniger, G.; Römpp, A.; Vilcinskas, A.; Spengler, B. Protein and peptide composition of male accessory glands of Apis mellifera drones investigated by mass spectrometry. PLoS ONE 2015, 10, e0125068. [Google Scholar] [CrossRef]
- Yan, L.; Song, H.; Tang, X.; Peng, X.; Li, Y.; Yang, H.; Zhou, Z.; Xu, J. Spermatophore development in drones indicates the metabolite support for sperm storage in honey bees (Apis cerana). Front. Physiol. 2023, 14, 1107660. [Google Scholar] [CrossRef]
- Metz, B.N.; Tarpy, D.R. Reproductive senescence in drones of the honey bee (Apis mellifera). Insects 2019, 10, 11. [Google Scholar] [CrossRef]
- Shoukry, R.; Khattaby, A.; El-Sheakh, A.; Abo-Ghalia, A.; Elbanna, S. Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egypt J. Agric. Res. 2013, 91, 825–834. [Google Scholar]
- Ben Abdelkader, F.; Kairo, G.; Tchamitchian, S.; Bonnet, M.; Cousin, M.; Barbouche, N.; Belzunces, L.; Brunet, J. Effects of clothianidin exposure on semen parameters of honey bee drones. J. New Sci. 2018, 59, 3791–3798. [Google Scholar]
- Page, R.E. The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.). Genetics 1980, 96, 263–273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, W.; Wang, L.; Tao, B.; Yao, H.; Liu, H.; Huang, S.; Li, J.; Xu, X.; Duan, X. Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica). Agriculture 2025, 15, 1590. https://doi.org/10.3390/agriculture15151590
Tong W, Wang L, Tao B, Yao H, Liu H, Huang S, Li J, Xu X, Duan X. Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica). Agriculture. 2025; 15(15):1590. https://doi.org/10.3390/agriculture15151590
Chicago/Turabian StyleTong, Wenlong, Lizhu Wang, Bingfang Tao, Huanjing Yao, Huiping Liu, Shaokang Huang, Jianghong Li, Xiaolan Xu, and Xinle Duan. 2025. "Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica)" Agriculture 15, no. 15: 1590. https://doi.org/10.3390/agriculture15151590
APA StyleTong, W., Wang, L., Tao, B., Yao, H., Liu, H., Huang, S., Li, J., Xu, X., & Duan, X. (2025). Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica). Agriculture, 15(15), 1590. https://doi.org/10.3390/agriculture15151590