Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,098)

Search Parameters:
Keywords = periodic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 973 KiB  
Article
Normalization of Oxygen Levels Induces a Metabolic Reprogramming in Livers Exposed to Intermittent Hypoxia Mimicking Obstructive Sleep Apnea
by Miguel Á. Hernández-García, Beatriz Aldave-Orzáiz, Carlos Ernesto Fernández-García, Esther Fuertes-Yebra, Esther Rey, Ángela Berlana, Ramón Farré, Carmelo García-Monzón, Isaac Almendros, Pedro Landete and Águeda González-Rodríguez
Antioxidants 2025, 14(8), 971; https://doi.org/10.3390/antiox14080971 (registering DOI) - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization on metabolic dysfunction in OSA patients using continuous positive airway pressure (CPAP) therapy, and in mice exposed to IH followed by a reoxygenation period. In the clinical study, 76 participants (44 OSA patients and 32 controls) were analyzed. OSA patients had higher insulin resistance, triglycerides, very low density lipoprotein (VLDL) content, and liver enzyme levels, along with a higher prevalence of liver steatosis. After 18 months of CPAP therapy, OSA patients showed significant improvements in insulin resistance, lipid profiles (total cholesterol and VLDL), liver function markers (AST and albumin), and steatosis risk scores (Fatty Liver Index and OWLiver test). In the experimental study, IH induced hepatic lipid accumulation, oxidative stress, and inflammation, and reoxygenation reversed these deleterious effects in mice. At the molecular level, IH downregulated fatty acid oxidation (FAO)-related genes, thus impairing the FAO process. Reoxygenation maintained elevated levels of lipogenic genes but restored FAO gene expression and activity, suggesting enhanced lipid clearance despite ongoing lipogenesis. Indeed, serum β hydroxybutyrate, a key marker of hepatic FAO in patients, was impaired in OSA patients but normalized after CPAP therapy, supporting improved FAO function. CPAP therapy improves lipid profiles, liver function, and MASLD progression in OSA patients. Experimental findings highlight the therapeutic potential of oxygen normalization in reversing IH-induced liver damage by FAO pathway restoration, indicating a metabolic reprogramming in the liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Sleep Disorders)
16 pages, 611 KiB  
Article
Effects of Increasing Dietary Inclusion of White Lupin on Growth Performance, Meat Quality, and Fatty Acid Profile on Growing-Fattening Pigs
by Georgeta Ciurescu, Mihaela Dumitru, Nicoleta Aurelia Lefter and Dan-Traian Râmbu
Agriculture 2025, 15(15), 1709; https://doi.org/10.3390/agriculture15151709 (registering DOI) - 7 Aug 2025
Abstract
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], [...] Read more.
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], meat quality, and fatty acid profile (FA). A total of 54 male crossbred pigs [(Topigs Large White × Norsvin Landrace) × Duroc], aged 12 weeks, with an initial average BW of 30.30 ± 0.77 kg, were divided into three dietary groups of 18 piglets each. The control group (CON) was fed a standardized SBM-based complete feed. In the experimental groups (WL1 and WL2) the SBM was replaced with increasing levels of WL seeds [WL1-5.0% and WL2-10.0% (grower period, 30–60 kg BW), and WL1-7.0% and WL2-14.0% (finisher period, 61–110 kg BW)]. All diets were formulated to be isocaloric and isonitrogenous with similar content of total lysine and sulphur amino acids, calcium, and available phosphorus. At the end of 83 days’ fattening trial, the animals were slaughtered. Longissimus dorsi muscle (LD) was sampled for analyses of the physicochemical traits. The results show that increasing the dietary raw WL concentration decreased final BW (p = 0.039), ADG (p < 0.0001), and ADFI (p = 0.004) throughout the experimental period, especially in the second phase of feeding. Dietary treatments did not affect the pigs’ blood biochemical constituents. Concerning LD muscle characteristics, the redness color (a*) and collagen content was higher (p < 0.0001) in the WL1/WL2 vs. CON group. Beneficial decrease in the values of some textural attributes (hardness, gumminess, chewiness, and resilience) of LD in the WL1/WL2 vs. CON group was registered. The use of WL had a significant effect on the content of FAs, especially for eicosapentaenoic (p = 0.014) and n-3 PUFA (p = 0.045), which were higher than those fed the CON diet. In conclusion, WL could be used as a replacement of SBM in growing–finishing pigs’ diets, with significant improvements in the meat fatty acid profile and technological properties. Full article
18 pages, 3248 KiB  
Article
Evaluation Model of Climatic Suitability for Olive Cultivation in Central Longnan, China
by Li Liu, Ying Na and Yun Ma
Atmosphere 2025, 16(8), 948; https://doi.org/10.3390/atmos16080948 (registering DOI) - 7 Aug 2025
Abstract
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes [...] Read more.
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes a climate suitability evaluation model for olive cultivation in central Longnan based on meteorological data and olive quality data in the Fotanggou planting base. Four key climatic factors are identified: cumulative sunshine hours during the fruit coloring to ripening period, average temperature during the fruit coloring to harvesting period, number of cloudy and rainy days during the harvesting period, and relative humidity during the fruit setting to fruit enlargement period. Olive oil quality is graded into three levels (Excellent III, Good II, Fair I) based on acidity, linoleic acid, and peroxide value using K-means clustering. A climate suitability index is developed by integrating these factors, with weights determined via principal component analysis. The model is validated against an olive quality report from the Dabao planting base, showing an 80% match rate. From 1991 to 2023, 87.9% of years exhibit suitable or moderately suitable conditions, with 100% of years in the past decade (2014–2023) reaching “Good” or “Excellent” levels. This model provides a scientific basis for evaluating and predicting olive oil quality, supporting sustainable olive industry development in Longnan. This model provides policymakers and farmers with actionable insights to ensure the long-term sustainability of olive industry amid climate uncertainty. Full article
14 pages, 632 KiB  
Article
Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation
by Lisa Riedlsperger, Heinz Anderle, Andreas Schwaighofer and Martin Lemmerer
Biophysica 2025, 5(3), 34; https://doi.org/10.3390/biophysica5030034 - 7 Aug 2025
Abstract
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine [...] Read more.
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine was determined in 4 M NaCl solution as [α]D20 = –302.5°. The specific rotations at 589 nm and 436 nm and the ratio were measured for several model proteins, some purified plasma-derived proteins and for three monoclonal antibodies. The immunoglobulin G concentrates all showed a narrow ratio range likely characteristic for this protein class. Heat denaturation experiments were conducted at temperatures between 50 and 85 °C both for short-time (10 min) and for prolonged periods of heat exposure (up to 210 min). Denaturation by heat resulted not only in the known levorotatory shift, but also in a shift in the specific rotation ratio. The stabilizing effect of fatty acids in bovine serum could be demonstrated by this parameter. Polarimetry thus appears to be a particularly sensitive and simple method for the characterization of the identity and the thermal stability of proteins and should therefore be added again as a complimentary method to the toolbox of protein chemistry. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

20 pages, 4401 KiB  
Article
Effect of Slightly Acidic Electrolyzed Water Combined with Nano-Bubble Sterilization on Quality of Larimichthys crocea During Refrigerated Storage
by Jiehui Zhong, Hongjin Deng, Na Lin, Mengyao Zheng, Junjie Wu, Quanyou Guo and Saikun Pan
Foods 2025, 14(15), 2754; https://doi.org/10.3390/foods14152754 - 7 Aug 2025
Abstract
The large yellow croaker (Larimichthys crocea) is susceptible to microbial contamination during storage due to its high protein and moisture contents. This study was designed to find a new way to reduce bacteria in large yellow croakers by combining slightly acidic [...] Read more.
The large yellow croaker (Larimichthys crocea) is susceptible to microbial contamination during storage due to its high protein and moisture contents. This study was designed to find a new way to reduce bacteria in large yellow croakers by combining slightly acidic electrolyzed water (SAEW) with nano-bubble (NB) technology. Exploring the effects of available chlorine concentration (ACC), processing time, and water temperature on the bacteria reduction effect of the SAEW-NB treatment for large yellow croakers. Also, the effects of the SAEW-NB combined treatment on sensory evaluation, total viable counts (TVCs), total volatile basic nitrogen (TVB-N), texture, taste profile, and volatile flavor compounds of large yellow croakers were analyzed during the storage period at 4 °C. The results show that the SAEW-NB treatment achieved significantly enhanced microbial reduction compared to individual treatments. Under the conditions of a 4 °C water temperature, 40 mg/L ACC, and 15 min treatment, the SAEW-NB treatment inhibited the increases in physical and chemical indexes such as TVC and TVB-N, maintained the fish texture, and delayed the production of off-flavor volatiles such as aldehydes, alcohols, esters, and ketones, compared with the control group (CG) during storage at 4 °C. In conclusion, the SAEW-NB treatment could better retard fish spoilage, extending the shelf life by approximately 2 days. It might be a promising new industrial approach for large yellow croakers’ storage. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

22 pages, 1215 KiB  
Article
Gas Atmosphere Innovation Applied to Prolong the Shelf Life of ‘Regina’ Sweet Cherries
by Rodrigo Neira-Ojeda, Sebastián Rodriguez, Cristian Hernández-Adasme, Violeta Muñoz, Dakary Delgadillo, Bo Sun, Xiao Yang and Victor Hugo Escalona
Plants 2025, 14(15), 2440; https://doi.org/10.3390/plants14152440 - 6 Aug 2025
Abstract
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing [...] Read more.
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing internal browning. Fruits were harvested in two different maturity stages (Light and Dark Mahogany skin color) and stored in CA of 15% CO2 + 10% O2; 10% CO2 + 10% O2; 10% CO2 + 5% O2; 5% CO2 + 5% O2 and MA of 4 to 5% CO2 + 16 to 17% O2 for 30 and 40 days at 0 °C and 90% RH, followed by a marketing period. After the storage, both maturity stages significantly reduced internal browning, decay, and visual quality losses in CA with 10–15% CO2 and 10% O2. In addition, it preserved luminosity, total soluble solids (TSSs), titratable acidity (TA), and bioactive compounds such as anthocyanins and phenols. This treatment also maintained the visual appearance of the sweet cherries, favoring their market acceptance. At the same time, the light red fruits showed a better general quality compared to darker color after the storage. In conclusion, a controlled atmosphere with optimized CO2 and O2 concentrations, together with harvesting with a Light Mahogany external color, represents an effective strategy to extend the shelf life of Regina sweet cherries up to 40 days plus the marketing period, maintaining their physical and sensory quality for export markets. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

18 pages, 1689 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 3342 KiB  
Article
Sphingolipid Metabolism Remodels Immunity and Metabolic Network in the Muscle of Female Chinese Mitten Crab (Eriocheir sinensis)
by Miaomiao Xue, Changyou Song, Hongxia Li, Jiyan He, Jianxiang Chen, Changxin Kong, Xiaowei Li, Hang Wang, Jie He and Pao Xu
Int. J. Mol. Sci. 2025, 26(15), 7562; https://doi.org/10.3390/ijms26157562 - 5 Aug 2025
Abstract
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during [...] Read more.
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during the fattening period. Therefore, this study used metabolomic and lipidomic to systematically analyze the effects of formulated diets on muscle metabolism in female E. sinensis. The results indicate that the formulated feeds improved immune performance by inhibiting inflammatory responses, apoptosis and autophagy. In addition, the feed promoted amino acid metabolism and protein synthesis while decreasing muscle fatty acid metabolism. Metabolomic analysis reveal that pyrimidine metabolism is involved in the regulation of muscle physiological health in fattening female crabs. Lipidomic analysis revealed that the formulated feeds play a role in muscle immune homeostasis, amino acid and fatty acid metabolism by regulating the level of ceramide (Cer (d18:1/22:0)) in sphingolipid metabolism. Through subnetwork analysis, the functional interactions of sphingolipid metabolism with the pathways of sphingolipid signaling, apoptosis regulation, inflammatory response and lipid dynamic homeostasis were identified, which further defined the important role of sphingolipid metabolism in the regulation of muscle physiological health and metabolic homeostasis was further identified. In summary, the formulated feeds effectively promote immune homeostasis and metabolism in the muscle of female E. sinensis during the fattening period. These findings provide a solid theoretical foundation for feed formulation optimization and application in fattening practices. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Viewed by 33
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 - 4 Aug 2025
Viewed by 141
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

18 pages, 957 KiB  
Article
Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes
by Marcello De Giosa, Adam G. Dale, Xingbo Wu and Alexandra M. Revynthi
Insects 2025, 16(8), 801; https://doi.org/10.3390/insects16080801 - 2 Aug 2025
Viewed by 293
Abstract
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric [...] Read more.
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric acid, potassium salt of fatty acids, garlic, thyme, and mineral oil) and conventional (abamectin, fenpyroximate, bifenthrin, spiromesifen) pesticides under laboratory conditions, using two types of spray applications: (A) curative, after erinea formation, and (B) prophylactic, before erinea formation. In the curative application, abamectin, garlic oil, and mineral oil were most effective; in the prophylactic application, abamectin and mineral oil showed the highest efficacies. Abamectin and mineral oil were further tested under greenhouse conditions. Both treatments effectively controlled A. simplex by preventing erinea formation over a four-week post-application period, regardless of the application type. At the end of the experiment, mites were extracted from R. simplex plants. In the curative application, significantly fewer mites were extracted from abamectin and mineral oil treatments than in the control. In the prophylactic application, mites were absent in abamectin and mineral oil treatments but present in the control. Abamectin and mineral oil can be used to manage A. simplex in landscapes. Full article
(This article belongs to the Special Issue Advances in the Bio-Ecology and Control of Plant-Damaging Acari)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 255
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 1476 KiB  
Article
Laboratory, Clinical, and Pathohistological Significance of the Outcomes of Patients with Membranous Nephropathy After 10 Year of Follow-Up
by Marko Baralić, Selena Gajić, Mihajlo Kostić, Milorad Stojadinović, Kristina Filić, Danka Bjelić, Vidna Karadžić-Ristanović, Ivana Mrđa, Jovana Gavrilović, Danica Ćujić, Aleksandar Sič, Stefan Janković, Ivan Putica, Sanja Stankovic, Dušan Vićentijević, Maja Životić, Sanja Radojević-Škodrić, Jelena Pavlović, Ana Bontić and Aleksandra Kezić
Life 2025, 15(8), 1221; https://doi.org/10.3390/life15081221 - 1 Aug 2025
Viewed by 365
Abstract
Membranous nephropathy (MN) is the most prevalent cause of nephrotic syndrome (NS) in adults, and it can be primary (idiopathic) with an unknown cause or secondary due to a variety of conditions (lupus, infections, malignancies, medications, etc.). It progresses to chronic kidney disease [...] Read more.
Membranous nephropathy (MN) is the most prevalent cause of nephrotic syndrome (NS) in adults, and it can be primary (idiopathic) with an unknown cause or secondary due to a variety of conditions (lupus, infections, malignancies, medications, etc.). It progresses to chronic kidney disease (CKD) in up to 60% of patients, and 10 to 30% develop end-stage kidney disease (ESKD). This retrospective study examines the importance of specific factors, including baseline demographic and clinical data, kidney biopsy PH findings, and selected biochemical parameters, influencing MN outcomes after 10 years of follow-up. The cohort included 94 individuals in whom a diagnosis of MN was established by percutaneous biopsy of the left kidney’s lower pole at the University Clinical Center of Serbia (UCCS) between 2008 and 2013. According to the outcomes, patients were divided into three groups: the recovery (Rec) group, with complete remission, including normal serum creatinine (Scr) and proteinuria (Prt), the group with development of chronic kidney disease (CKD), and the group with development of end-stage kidney disease (ESKD). Nephropathologists graded pathohistological (PH) results from I to III based on the observed PH findings. During the follow-up period, 33 patients were in the Rec group, CKD developed in 53 patients, and ESKD developed in 8 patients. Baseline creatinine clearance levels (Ccr), Scr, and uric acid (urate) were found to be significantly associated with the outcomes (p < 0.001). The lowest values of baseline Scr and urate were observed in the Rec group. The presence of acute kidney injury (AKI) or CKD at the time of kidney biopsy was associated with the more frequent development of ESKD (p = 0.02). Lower Ccr was associated with a higher likelihood of progressing to CKD (B = −0.021, p = 0.014), whereas older age independently predicted progression to ESKD (B = 0.02, p = 0.032). Based on this study, it was concluded that the most important biochemical and clinical factors that are associated with the outcomes of this disease are the values of Scr, Ccr, and urate and the existence of CKD at the time of kidney biopsy. Unlike most previous studies, the presence of HTN had no statistical significance in the outcome of the disease. Full article
Show Figures

Figure 1

26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 - 1 Aug 2025
Viewed by 215
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

Back to TopTop