Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = peaks-over-threshold algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 (registering DOI) - 23 Jan 2026
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 5656 KB  
Article
Reading the Himalayan Treeline in 3D: Species Turnover and Structural Thresholds from UAV LiDAR
by Niti B. Mishra and Paras Bikram Singh
Remote Sens. 2026, 18(2), 309; https://doi.org/10.3390/rs18020309 - 16 Jan 2026
Viewed by 257
Abstract
Mountain treelines are among the most climate-sensitive ecosystems on Earth, yet their fine-scale structural and species level dynamics remain poorly resolved in the Himalayas. In particular, the absence of three-dimensional, crown level measurements have hindered the detection of structural thresholds and species turnover [...] Read more.
Mountain treelines are among the most climate-sensitive ecosystems on Earth, yet their fine-scale structural and species level dynamics remain poorly resolved in the Himalayas. In particular, the absence of three-dimensional, crown level measurements have hindered the detection of structural thresholds and species turnover that often precede treeline shifts. To bridge this gap, we introduce UAV LiDAR—applied for the first time in the Hindu Kush Himalayas—to quantify canopy structure and tree species distributions across a steep treeline ecotone in the Manang Valley of central Nepal. High-density UAV-LiDAR data acquired over elevations of 3504–4119 m was used to quantify elevation-dependent changes in canopy stature and cover from a canopy height model derived from the 3D point cloud, while individual tree segmentation and species classification were performed directly on the 3D, height-normalized point cloud at the crown level. Individual trees were delineated using a watershed-based segmentation algorithm while tree species were classified using a random forest model trained on LiDAR-derived structural and intensity metrics, supported by field-validated reference data. Results reveal a sharply defined treeline characterized by an abrupt collapse in canopy height and cover within a narrow ~60–80 m vertical interval. Treeline “threshold” was quantified as a breakpoint elevation from a piecewise model of tree cover versus elevation, and the elevation span over which modeled cover and height distributions rapidly declined from forest values to near-zero. Segmented regression identified a distinct structural breakpoint near 3995 m elevation. Crown-level species predictions aggregated by elevation quantified an ordered turnover in dominance, with Pinus wallichiana most frequent at lower elevations, Abies spectabilis peaking mid-slope, and Betula utilis concentrated near the upper treeline. Species classification achieved high overall accuracy (>85%), although performance varied among taxa, with broadleaf Betula more difficult to discriminate than conifers. These findings underscore UAV LiDAR’s value for resolving sharp ecological thresholds, identifying elevation-driven simplification in forest structure, and bridging observation gaps in remote, rugged mountain ecosystems. Full article
Show Figures

Figure 1

21 pages, 7908 KB  
Article
Bi-Level Decision-Making for Commercial Charging Stations in Demand Response Considering Nonlinear User Satisfaction
by Weiqing Sun, En Xie and Wenwei Yang
Sustainability 2026, 18(2), 907; https://doi.org/10.3390/su18020907 - 15 Jan 2026
Viewed by 143
Abstract
With the widespread adoption of electric vehicles, commercial charging stations (CCS) have grown rapidly as a core component of charging infrastructure. Due to the concentrated and high-power charging load characteristics of CCS, a ‘peak on peak’ phenomenon can occur in the power distribution [...] Read more.
With the widespread adoption of electric vehicles, commercial charging stations (CCS) have grown rapidly as a core component of charging infrastructure. Due to the concentrated and high-power charging load characteristics of CCS, a ‘peak on peak’ phenomenon can occur in the power distribution network. Demand response (DR) serves as an important and flexible regulation tool for power systems, offering a new approach to addressing this issue. However, when CCS participates in DR, it faces a dual dilemma between operational revenue and user satisfaction. To address this, this paper proposes a bi-level, multi-objective framework that co-optimizes station profit and nonlinear user satisfaction. An asymmetric sigmoid mapping is used to capture threshold effects and diminishing marginal utility. Uncertainty in users’ charging behaviors is evaluated using a Monte Carlo scenario simulation together with chance constraints enforced at a 0.95 confidence level. The model is solved using the fast non-dominated sorting genetic algorithm, NSGA-II, and the compromise optimal solution is identified via the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Case studies show robust peak shaving with a 6.6 percent reduction in the daily maximum load, high satisfaction with a mean of around 0.96, and higher revenue with an improvement of about 12.4 percent over the baseline. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

28 pages, 9738 KB  
Article
Design and Evaluation of an Underactuated Rigid–Flexible Coupled End-Effector for Non-Destructive Apple Harvesting
by Zeyi Li, Zhiyuan Zhang, Jingbin Li, Gang Hou, Xianfei Wang, Yingjie Li, Huizhe Ding and Yufeng Li
Agriculture 2026, 16(2), 178; https://doi.org/10.3390/agriculture16020178 - 10 Jan 2026
Viewed by 252
Abstract
In response to the growing need for efficient, stable, and non-destructive gripping in apple harvesting robots, this study proposes a novel rigid–flexible coupled end-effector. The design integrates an underactuated mechanism with a real-time force feedback control system. First, compression tests on ‘Red Fuji’ [...] Read more.
In response to the growing need for efficient, stable, and non-destructive gripping in apple harvesting robots, this study proposes a novel rigid–flexible coupled end-effector. The design integrates an underactuated mechanism with a real-time force feedback control system. First, compression tests on ‘Red Fuji’ apples determined the minimum damage threshold to be 24.33 N. A genetic algorithm (GA) was employed to optimize the geometric parameters of the finger mechanism for uniform force distribution. Subsequently, a rigid–flexible coupled multibody dynamics model was established to simulate the grasping of small (70 mm), medium (80 mm), and large (90 mm) apples. Additionally, a harvesting experimental platform was constructed to verify the performance. Results demonstrated that by limiting the contact force of the distal phalange region silicone (DPRS) to 24 N via active feedback, the peak contact forces on the proximal phalange region silicone (PPRS) and middle phalange region silicone (MPRS) were effectively maintained below the damage threshold across all three sizes. The maximum equivalent stress remained significantly below the fruit’s yield limit, ensuring no mechanical damage occurred, with an average enveloping time of approximately 1.30 s. The experimental data showed strong agreement with the simulation, with a mean absolute percentage error (MAPE) of 5.98% for contact force and 5.40% for enveloping time. These results confirm that the proposed end-effector successfully achieves high adaptability and reliability in non-destructive harvesting, offering a valuable reference for agricultural robotics. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 1977 KB  
Article
Consistency Testing Method for Energy Storage Systems with Time-Series Properties
by Nan Wang and Zhen Li
Energies 2026, 19(1), 46; https://doi.org/10.3390/en19010046 - 21 Dec 2025
Viewed by 287
Abstract
As a cushion for the volatility of renewable energy, energy storage systems can achieve peak shaving and valley filling, thereby improving the operational efficiency and economic performance of the power grid. In addition, energy storage systems can absorb renewable energy production, thereby enhancing [...] Read more.
As a cushion for the volatility of renewable energy, energy storage systems can achieve peak shaving and valley filling, thereby improving the operational efficiency and economic performance of the power grid. In addition, energy storage systems can absorb renewable energy production, thereby enhancing the safety and reliability of the electrical power system. Nowadays, energy storage systems are facing severe problems such as explosions that are caused by overcharging and discharging. The main reason for the overcharging and discharging of energy storage systems is the inconsistency in the state of the electric core in the charging and discharging process, which not only affects the safety of the electric core, but also influences the overall charging and discharging capacity of the energy storage system. To address this inconsistency of energy storage cores, this paper proposes an energy storage consistency monitoring method under the framework of clustering-classification, which adopts the Belief Peaks Evidential Clustering and Evidential K-Nearest Neighbors classification algorithm. This paper proposes a BPEC-EKNN-based method for battery inconsistency detection and localization. The proposed approach first constructs battery performance evaluation coefficients to characterize inter-cell behavioral differences, and then integrates an enhanced k-nearest neighbor strategy to identify abnormal cells. It also identifies and locates inconsistent battery cells by analyzing the magnitude of the confidence level m (Ω), without relying on predefined thresholds. Also, time-series data as opposed to the evaluation of voltage data at a singular point is engaged to realize the detection and localization of energy storage core consistency anomalies under the consideration of time-series data. The proposed algorithm is capable of identifying inconsistencies among energy storage batteries, with the parameter m (Ω) serving as an indicator of the likelihood of inconsistency. Experimental results on battery pack datasets demonstrate that the proposed method achieves higher detection accuracy and robustness compared with representative statistical threshold-based methods and machine learning approaches, and it can more accurately identify inconsistent battery cells. By applying perturbation analysis to real-time operational data, the algorithm proposed in this paper can detect inconsistencies in battery cells reliably. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

45 pages, 59804 KB  
Article
Multi-Threshold Art Symmetry Image Segmentation and Numerical Optimization Based on the Modified Golden Jackal Optimization
by Xiaoyan Zhang, Zuowen Bao, Xinying Li and Jianfeng Wang
Symmetry 2025, 17(12), 2130; https://doi.org/10.3390/sym17122130 - 11 Dec 2025
Cited by 1 | Viewed by 366
Abstract
To address the issues of uneven population initialization, insufficient individual information interaction, and passive boundary handling in the standard Golden Jackal Optimization (GJO) algorithm, while improving the accuracy and efficiency of multilevel thresholding in artistic image segmentation, this paper proposes an improved Golden [...] Read more.
To address the issues of uneven population initialization, insufficient individual information interaction, and passive boundary handling in the standard Golden Jackal Optimization (GJO) algorithm, while improving the accuracy and efficiency of multilevel thresholding in artistic image segmentation, this paper proposes an improved Golden Jackal Optimization algorithm (MGJO) and applies it to this task. MGJO introduces a high-quality point set for population initialization, ensuring a more uniform distribution of initial individuals in the search space and better adaptation to the complex grayscale characteristics of artistic images. A dual crossover strategy, integrating horizontal and vertical information exchange, is designed to enhance individual information sharing and fine-grained dimensional search, catering to the segmentation needs of artistic image textures and color layers. Furthermore, a global-optimum-based boundary handling mechanism is constructed to prevent information loss when boundaries are exceeded, thereby preserving the boundary details of artistic images. The performance of MGJO was evaluated on the CEC2017 (dim = 30, 100) and CEC2022 (dim = 10, 20) benchmark suites against seven algorithms, including GWO and IWOA. Population diversity analysis, exploration–exploitation balance assessment, Wilcoxon rank-sum tests, and Friedman mean-rank tests all demonstrate that MGJO significantly outperforms the comparison algorithms in optimization accuracy, stability, and statistical reliability. In multilevel thresholding for artistic image segmentation, using Otsu’s between-class variance as the objective function, MGJO achieves higher fitness values (approaching Otsu’s optimal values) across various artistic images with complex textures and colors, as well as benchmark images such as Baboon, Camera, and Lena, in 4-, 6-, 8-, and 10-level thresholding tasks. The resulting segmented images exhibit superior peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM) compared to other algorithms, more precisely preserving brushstroke details and color layers. Friedman average rankings consistently place MGJO in the lead. These experimental results indicate that MGJO effectively overcomes the performance limitations of the standard GJO, demonstrating excellent performance in both numerical optimization and multilevel thresholding artistic image segmentation. It provides an efficient solution for high-dimensional complex optimization problems and practical demands in artistic image processing. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 498 KB  
Article
Are Countermovement Jump Variables Indicators of Injury Risk in Professional Soccer Players? A Machine Learning Approach
by Jorge Pérez-Contreras, Rodrigo Villaseca-Vicuña, Juan Francisco Loro-Ferrer, Felipe Inostroza-Ríos, Ciro José Brito, Hugo Cerda-Kohler, Alejandro Bustamante-Garrido, Fernando Muñoz-Hinrichsen, Felipe Hermosilla-Palma, David Ulloa-Díaz, Pablo Merino-Muñoz and Esteban Aedo-Muñoz
Appl. Sci. 2025, 15(23), 12721; https://doi.org/10.3390/app152312721 - 1 Dec 2025
Viewed by 864
Abstract
Background: Muscle injuries are among the main problems in professional soccer, affecting player availability and team performance. Countermovement jump (CMJ) variables have been proposed as indicators of injury risk and for detecting strength imbalances, although their use is less explored than isokinetic assessments. [...] Read more.
Background: Muscle injuries are among the main problems in professional soccer, affecting player availability and team performance. Countermovement jump (CMJ) variables have been proposed as indicators of injury risk and for detecting strength imbalances, although their use is less explored than isokinetic assessments. Unlike previous studies based solely on linear statistics, this research integrates biomechanical data with machine learning approaches, providing a novel perspective for injury prediction in elite soccer. Objective: To examine the association between CMJ variables and muscle injury risk during a competitive season, considering injury incidence and effective playing minutes. It was hypothesized that specific CMJ asymmetries would be associated with a higher injury risk, and that machine learning algorithms could accurately classify players according to their injury status. Methods: Forty-one professional soccer players (18 women, 23 men) from national league teams (Chile) were assessed during preseason using force platforms. Non-contact muscle injuries and playing minutes were recorded over 10 months after the CMJ evaluations. Analyses included two-way ANOVA (sex × injury status) and machine learning algorithms (Logistic Regression, Decision Tree, K-Nearest Neighbors [KNN], Random Forest, Gradient Boosting [GB]). Results: Significant sex differences were observed in most variables (p < 0.05 and ηp2 > 0.11), except peak force and peak power asymmetry. For injury status, only peak force asymmetry differed, while sex × injury interactions were found in peak power and left peak power. KNN (Accuracy = 87% and CI 95% = 71% to 96%) and GB (Accuracy = 84% and CI 95% = 68% to 94%) achieved the best classification performance between injured and non-injured players. Conclusions: CMJ did not show consistent statistical differences between injured and non-injured groups. However, machine learning models, particularly KNN and GB, demonstrated high predictive accuracy, suggesting that injuries are a complex phenomenon characterized by non-linear patterns. These findings highlight the potential of combining CMJ with machine learning approaches for functional monitoring and early detection of injury risk, though validation in larger cohorts is required before establishing clinical thresholds and preventive applications. Full article
Show Figures

Figure 1

19 pages, 5458 KB  
Article
Coordinated Optimal Dispatch of Source–Grid–Load–Storage Based on Dynamic Electricity Price Mechanism
by Xiangdong Meng, Dexin Li, Chenggang Li, Haifeng Zhang, Xinyue Piao and Hui Luan
Energies 2025, 18(23), 6277; https://doi.org/10.3390/en18236277 - 28 Nov 2025
Viewed by 421
Abstract
Under the backdrop of the “dual carbon” strategy, the rapid increase in renewable energy penetration has exacerbated challenges such as widening peak–valley load gaps and insufficient grid regulation capacity, highlighting the urgent need to establish a market-oriented collaborative dispatching mechanism. This paper proposes [...] Read more.
Under the backdrop of the “dual carbon” strategy, the rapid increase in renewable energy penetration has exacerbated challenges such as widening peak–valley load gaps and insufficient grid regulation capacity, highlighting the urgent need to establish a market-oriented collaborative dispatching mechanism. This paper proposes a peak-shaving and valley-filling dispatching approach based on a multi-agent system (MAS) to enhance both the regulatory capability and economic efficiency of power grids. A multi-agent collaborative architecture is established on the generation side, where behavioral modeling and interaction simulations of generation, load, and energy storage agents are conducted using the NetLogo platform to emulate dynamic responses under market conditions. On the grid side, dynamic electricity pricing and energy storage control strategies are implemented. An integrated time-of-use electricity pricing mechanism is designed that incorporates environmental pollution factors, supply–demand state factors, and price-smoothing factors to dynamically adjust tariffs. A price-responsive load demand model and a dynamic threshold-based energy storage control strategy are developed to facilitate flexible regulation. On the load side, an optimized dispatch model is formulated with dual objectives of minimizing system operating costs and reducing the standard deviation of the net load profile. The Beetle Antennae Search (BAS) algorithm is employed to solve the model, striking a balance between economic efficiency and stability. Case study results demonstrate that, compared with traditional dispatch methods, the coordinated optimization of the BAS algorithm and the dynamic pricing mechanism proposed in this paper achieves a dual improvement in solution efficiency and economy. This ultimately reduces the system’s peak-to-valley difference by 10.92% and operating costs by 66.2%, proving its effectiveness and superiority in power grids with high renewable energy penetration. Full article
(This article belongs to the Special Issue Optimization Methods for Electricity Market and Smart Grid)
Show Figures

Figure 1

31 pages, 20333 KB  
Article
Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China
by Yuzhong Kong, Kangcheng Zhu, Hua Wu, Chong Xu, Ze Meng, Hui Kong, Wen Tan, Xiangyun Kong, Xingwang Chen, Linna Chen and Tong Xu
Sustainability 2025, 17(21), 9575; https://doi.org/10.3390/su17219575 - 28 Oct 2025
Viewed by 731
Abstract
Here we present a high-resolution landslide susceptibility model for Guiyang County, China, developed to support sustainable disaster risk management. Our approach couples optimized positive and negative training samples with an ensemble of machine-learning algorithms to maximize predictive fidelity. We compiled a georeferenced inventory [...] Read more.
Here we present a high-resolution landslide susceptibility model for Guiyang County, China, developed to support sustainable disaster risk management. Our approach couples optimized positive and negative training samples with an ensemble of machine-learning algorithms to maximize predictive fidelity. We compiled a georeferenced inventory of 146 landslides by integrating historical records with systematic field validation. Sample optimization was central to our methodology: landslide presence points were refined via buffer-based dilution, and four classifiers—SVM, LDA, RF, and ET—were trained with identical covariate sets to ensure comparability. Three strategies for selecting pseudo-absences—buffering, low-slope filtering, and coupling with the IOE—were benchmarked. The Slope-IOE-O model, which synergizes low-gradient screening with entropy-weighted sampling, yielded the highest predictive capacity (AUC = 0.965). SHAP-based interpretability revealed that slope, monthly maximum rainfall, surface roughness, and elevation collectively dominate susceptibility, with pronounced non-linearities and interactions. Slope contribution peaks at 20–30°, monthly maximum rainfall exhibits a critical threshold near 225 mm, and the synergy between high roughness and road density amplifies landslide risk. Spatially, susceptibility follows a pronounced north–south gradient, with high-hazard corridors aligned along northern and southern mountain belts and the urban core of southern Guiyang County. By integrating rigorously curated training data with robust machine-learning workflows, this study provides a transferable framework for proactive landslide risk assessment, offering scientific support for sustainable land-use planning and resilient development in mountainous regions. Full article
Show Figures

Figure 1

17 pages, 4504 KB  
Article
Inversion of Soil Parameters and Deformation Prediction for Deep Excavation Based on PSO-SVM Model
by Jing Zhao, Longhui Chen, Hongyin Yang, Bin Li, Linlong Yang, Hao Peng and Hongyou Cao
Sensors 2025, 25(20), 6281; https://doi.org/10.3390/s25206281 - 10 Oct 2025
Viewed by 537
Abstract
During deep excavation, actual soil parameters undergo changes. To enhance the accuracy of soil parameter selection in finite element simulation and improve the precision of finite element analysis, an inversion method for soil parameters based on a PSO-SVM model is proposed. In this [...] Read more.
During deep excavation, actual soil parameters undergo changes. To enhance the accuracy of soil parameter selection in finite element simulation and improve the precision of finite element analysis, an inversion method for soil parameters based on a PSO-SVM model is proposed. In this method, the particle swarm optimization (PSO) algorithm is utilized to optimize the penalty parameter C and kernel function parameter g of the support vector machine (SVM) model. The optimized PSO-SVM model is employed to establish a nonlinear mapping relationship between the horizontal displacements of retaining structures in deep excavations and soil parameters through orthogonal experimental design and finite element simulation analysis. Subsequently, soil parameters are inverted from monitoring data of horizontal displacements of retaining structures, and the reliability of the parameters is verified. The deformation of the retaining structures during subsequent cases is then predicted. The results demonstrate that the absolute error of the peak maximum horizontal displacements of the retaining structures after inversion is maintained within 1 mm. The maximum relative error is reduced from 18.96% before inversion to 7.63%, indicating that the inverted soil parameters for the deep excavation possess high accuracy. The precision of the finite element simulation for deep excavation is significantly improved, effectively reflecting the actual mechanical properties of the soil during the construction stage. The inverted parameters can be used for the prediction of subsequent retaining structure deformation. During subsequent construction conditions, the predicted maximum horizontal displacement (deformation) of the retaining structure at monitoring point CX1 is 15.66 mm, and that at monitoring point CX2 is predicted to be 14.22 mm. Neither value exceeds the project warning threshold of 30.00 mm. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 741 KB  
Article
A DH-KSVD Algorithm for Efficient Compression of Shock Wave Data
by Jiarong Liu, Yonghong Ding and Wenbin You
Appl. Sci. 2025, 15(19), 10640; https://doi.org/10.3390/app151910640 - 1 Oct 2025
Viewed by 551
Abstract
To address low training efficiency and poor reconstruction in traditional K Singular Value Decomposition (KSVD) for compressive sensing of shock wave signals, this study proposes an improved algorithm, DH-KSVD, integrating dynamic pruning and hybrid coding. The dynamic pruning mechanism eliminates redundant atoms according [...] Read more.
To address low training efficiency and poor reconstruction in traditional K Singular Value Decomposition (KSVD) for compressive sensing of shock wave signals, this study proposes an improved algorithm, DH-KSVD, integrating dynamic pruning and hybrid coding. The dynamic pruning mechanism eliminates redundant atoms according to their contributions and adaptive thresholds, while incorporating residual features to enhance dictionary compactness and training efficiency. The hybrid sparse constraint integrates the sparsity of 0-Orthogonal Matching Pursuit (OMP) with the noise robustness of 1-Least Absolute Shrinkage and Selection Operator (LASSO), dynamically adjusting their relative weights to enhance both coding quality and reconstruction stability. Experiments on typical shock wave datasets show that, compared with Discrete Cosine Transform (DCT), KSVD, and feature-based segmented dictionary methods (termed CC-KSVD), DH-KSVD reduces average training time by 46.4%, 31%, and 13.7%, respectively. At a Compression Ratio (CR) of 0.7, the Root Mean Square Error (RMSE) decreases by 67.1%, 65.7%, and 36.2%, while the Peak Signal-to-Noise Ratio (PSNR) increases by 35.5%, 39.8%, and 11.8%, respectively. The proposed algorithm markedly improves training efficiency and achieves lower RMSE and higher PSNR under high compression ratios, providing an effective solution for compressing long-duration, transient shock wave signals. Full article
Show Figures

Figure 1

9 pages, 1031 KB  
Article
Tracking Inflammation in CAR-T Therapy: The Emerging Role of Serum Amyloid A (SAA)
by Ilaria Pansini, Eugenio Galli, Alessandro Corrente, Marcello Viscovo, Silvia Baroni, Nicola Piccirillo, Patrizia Chiusolo, Federica Sorà and Simona Sica
Cancers 2025, 17(19), 3184; https://doi.org/10.3390/cancers17193184 - 30 Sep 2025
Viewed by 1064
Abstract
Background: Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of relapsed/refractory large B-cell lymphoma (LBCL), but its administration is often complicated by cytokine release syndrome (CRS). Interleukin-6 (IL-6) is widely used to monitor CRS, though its clinical value diminishes after tocilizumab [...] Read more.
Background: Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of relapsed/refractory large B-cell lymphoma (LBCL), but its administration is often complicated by cytokine release syndrome (CRS). Interleukin-6 (IL-6) is widely used to monitor CRS, though its clinical value diminishes after tocilizumab administration. We aimed to evaluate serum amyloid A (SAA), a dynamic acute-phase reactant, as a treatment-independent biomarker of inflammation and toxicity in CAR-T recipients. Methods: This retrospective study included 43 adults with LBCL treated with axicabtagene ciloleucel. SAA and other inflammatory markers were assessed from lymphodepletion through day +11 post-infusion. CRS and ICANS were graded per ASTCT criteria. Statistical analyses included Mann–Whitney U tests, Spearman’s correlation, and ROC curve analysis to evaluate predictive performance. Results: SAA levels peaked at day +4 and normalized by day +11, displaying wave-like kinetics. Levels were significantly higher in patients with any-grade CRS at early timepoints but showed no association with ICANS. SAA correlated strongly with CRP, suPAR, sST2, fibrinogen, ferritin, procalcitonin, and IL-6. Compared to IL-6, SAA was more predictive of CRS at day +2 and +4, and unaffected by tocilizumab. Baseline SAA also correlated with the mEASIX score, suggesting linkage to endothelial stress. Non-responders at 3-month PET had higher baseline SAA than responders (196.0 vs. 17.7 mg/L, p = 0.036), with ROC analysis yielding an AUC of 0.74 and an optimal threshold of 79.8 mg/L. Conclusions: SAA is a robust and dynamic marker of systemic inflammation, with potential utility in both toxicity monitoring and response prediction in the CAR-T setting. Its independence from IL-6 modulation positions it as a promising biomarker for future integration into clinical algorithms. Full article
(This article belongs to the Special Issue Advances in Targets for CAR T Therapy in Hematologic Malignancies)
Show Figures

Figure 1

20 pages, 3174 KB  
Article
Techno-Economic Optimization of a Grid-Connected Hybrid-Storage-Based Photovoltaic System for Distributed Buildings
by Tao Ma, Bo Wang, Cangbin Dai, Muhammad Shahzad Javed and Tao Zhang
Electronics 2025, 14(19), 3843; https://doi.org/10.3390/electronics14193843 - 28 Sep 2025
Viewed by 679
Abstract
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected [...] Read more.
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected photovoltaic (PV) system integrated with pumped hydro storage (PHS) and battery storage for residential applications. A novel optimization algorithm is employed to achieve techno-economic optimization of the hybrid system. The results indicate a remarkably short payback period of about 5 years, significantly outperforming previous studies. Additionally, a threshold is introduced to activate pumping and water storage during off-peak nighttime electricity hours, strategically directing surplus power to either the pump or battery according to system operation principles. This nighttime water storage strategy not only promises considerable cost savings for residents, but also helps to mitigate grid stress under time-of-use pricing schemes. Overall, this study demonstrates that, through optimized system sizing, costs can be substantially reduced. Importantly, with the nighttime storage strategy, the payback period can be shortened even further, underscoring the novelty and practical relevance of this research. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

20 pages, 5553 KB  
Article
Transmit Power Optimization for Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems
by Yang Liu, Xiaoyue Li, Bin Wang and Yanhong Xu
IoT 2025, 6(4), 59; https://doi.org/10.3390/iot6040059 - 25 Sep 2025
Viewed by 645
Abstract
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional [...] Read more.
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional power enhancement solutions are infeasible for the underground coal mine scenario due to strict explosion-proof safety regulations and battery-powered IoT devices. To address this challenge, we propose singular value decomposition-based Lagrangian optimization (SVD-LOP) to minimize transmit power at the mining base station (MBS) for IRS-assisted coal mine wireless communication systems. In particular, we first establish a three-dimensional twin cluster geometry-based stochastic model (3D-TCGBSM) to accurately characterize the underground coal mine channel. On this basis, we formulate the MBS transmit power minimization problem constrained by user signal-to-noise ratio (SNR) target and IRS phase shifts. To solve this non-convex problem, we propose the SVD-LOP algorithm that performs SVD on the channel matrix to decouple the complex channel coupling and introduces the Lagrange multipliers. Furthermore, we develop a low-complexity successive convex approximation (LC-SCA) algorithm to reduce computational complexity, which constructs a convex approximation of the objective function based on a first-order Taylor expansion and enables suboptimal solutions. Simulation results demonstrate that the proposed SVD-LOP and LC-SCA algorithms achieve transmit power peaks of 20.8dBm and 21.4dBm, respectively, which are slightly lower than the 21.8dBm observed for the SDR algorithm. It is evident that these algorithms remain well below the explosion-proof safety threshold, which achieves significant power reduction. However, computational complexity analysis reveals that the proposed SVD-LOP and LC-SCA algorithms achieve O(N3) and O(N2) respectively, which offers substantial reductions compared to the SDR algorithm’s O(N7). Moreover, both proposed algorithms exhibit robust convergence across varying user SNR targets while maintaining stable performance gains under different tunnel roughness scenarios. Full article
Show Figures

Figure 1

15 pages, 4604 KB  
Article
A JPEG Reversible Data Hiding Algorithm Based on Block Smoothness Estimation and Optimal Zero Coefficient Selection
by Ya Yue, Minqing Zhang, Peizheng Lai and Fuqiang Di
Appl. Sci. 2025, 15(18), 10282; https://doi.org/10.3390/app151810282 - 22 Sep 2025
Viewed by 653
Abstract
To address the issues of image quality degradation and file size expansion encountered during reversible data hiding (RDH) of JPEG images, a JPEG reversible data hiding algorithm based on block smoothness estimation and optimal zero coefficient selection is proposed. Firstly, a block smoothness [...] Read more.
To address the issues of image quality degradation and file size expansion encountered during reversible data hiding (RDH) of JPEG images, a JPEG reversible data hiding algorithm based on block smoothness estimation and optimal zero coefficient selection is proposed. Firstly, a block smoothness estimation strategy is designed based on the number of zero coefficients and non-zero quantisation table values within DCT blocks, prioritising DCT blocks with higher smoothness for information embedding. Subsequently, under a given embedding payload, an optimal zero coefficient selection strategy is introduced. Blocks are partitioned into embedding regions and non-embedding regions based on a preset position threshold T. Within embedding regions, the frequency of zero coefficients at different positions across all blocks is statistically analysed, with embedding prioritised at positions exhibiting the highest zero coefficient frequency to enhance embedding efficiency. Concurrently, by setting positive and negative displacement gaps to constrain the modification range of non-zero coefficients, invalid shifts are minimised. This further enhances visual quality while controlling file expansion. Experimental results demonstrate that, compared to existing algorithms, the proposed method achieves a peak signal-to-noise ratio improvement of 0.75 to 3.62 dB under fixed embedding capacity. File expansion is reduced by 1038 to 2243 bits, whilst enabling fully reversible image restoration. Full article
Show Figures

Figure 1

Back to TopTop