Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = passive reconfiguration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10591 KB  
Article
Hydraulic Asymmetries for Biological and Bioinspired Valves in Tubular Channels: A Numerical Analysis
by Francesco Varnier, Reza Norouzikudiani, Giovanni Corsi, Daniele Agostinelli, Ido Levin and Antonio DeSimone
Biomimetics 2026, 11(2), 87; https://doi.org/10.3390/biomimetics11020087 - 26 Jan 2026
Abstract
Biological, biomimetic, and engineering systems make extensive use of hydraulic asymmetries to control flow inside tubular structures. Examples span physiological valves, the guided transport observed in shark intestines, and passive devices such as Tesla valves. Here we investigate the mechanisms that generate these [...] Read more.
Biological, biomimetic, and engineering systems make extensive use of hydraulic asymmetries to control flow inside tubular structures. Examples span physiological valves, the guided transport observed in shark intestines, and passive devices such as Tesla valves. Here we investigate the mechanisms that generate these asymmetries using the notion of diodicity, defined as the ratio between pressure drops required to drive the same flow in opposite directions. We first focus on 2D geometries, which allow us to identify and study the main contributions to hydraulic asymmetry: channel geometry and internal obstacles embedded within a channel with rigid walls. By considering both rigid and deformable obstacles, we model channels that always remain open in both directions and channels that can be completely blocked by valve-like structures. We then extend the analysis to 3D geometries, again considering rigid and elastic cases. As a general trend, we find that geometry alone establishes a baseline diodicity, while higher dimensionality and structural reconfiguration consistently amplify the effect. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Graphical abstract

17 pages, 5360 KB  
Article
Experimental Validation of the Direct Kinematics of a Passive Stewart-Gough Platform with Modified Cardan Joints Using Integrated Absolute Linear Encoders
by Martin Bem, Aleš Ude and Bojan Nemec
Sensors 2026, 26(3), 771; https://doi.org/10.3390/s26030771 - 23 Jan 2026
Viewed by 129
Abstract
This paper presents the experimental validation of a computational kinematic model for a passive Stewart–Gough platform equipped with modified Cardan joints. The introduced joint geometry significantly increases structural stiffness but invalidates the standard spherical joint assumption commonly used in hexapod kinematic formulations. To [...] Read more.
This paper presents the experimental validation of a computational kinematic model for a passive Stewart–Gough platform equipped with modified Cardan joints. The introduced joint geometry significantly increases structural stiffness but invalidates the standard spherical joint assumption commonly used in hexapod kinematic formulations. To address this, we develop an efficient numerical optimization-based framework that solves both the direct and inverse kinematics without relying on simplified joint models. Furthermore, to enable autonomous and absolute pose measurement, each cylindrical leg joint of the platform is equipped with a LinACE™ absolute linear encoder. This sensor integration transforms the passive mechanism into an IoT-enabled reconfigurable fixture capable of internally sensing, tracking, and recalling its own configuration. The direct kinematics are computed iteratively using a homogeneous transformation formulation and benchmarked against analytical models derived for ideal spherical joints. Experimental results demonstrate sub-millimeter accuracy in pose estimation, confirming the validity of the proposed kinematic model and highlighting the suitability of the sensor-equipped hexapod for industrial flexible fixturing applications. Full article
(This article belongs to the Special Issue Advances in Sensing, Control and Path Planning for Robotic Systems)
Show Figures

Figure 1

20 pages, 534 KB  
Entry
Digital Transformation in Port Logistics
by Zhenqing Su
Encyclopedia 2026, 6(1), 28; https://doi.org/10.3390/encyclopedia6010028 - 20 Jan 2026
Viewed by 86
Definition
Digital transformation in port logistics represents a profound and systemic shift in the way maritime trade and supply chain operations are designed, coordinated, and governed through the pervasive integration of advanced digital technologies and data-driven management practices. It extends beyond the mere digitization [...] Read more.
Digital transformation in port logistics represents a profound and systemic shift in the way maritime trade and supply chain operations are designed, coordinated, and governed through the pervasive integration of advanced digital technologies and data-driven management practices. It extends beyond the mere digitization of paper-based documents into electronic formats and beyond the digitalization of isolated processes with IT tools. Transformation involves reconfiguring organizational structures, decision-making logics, and value creation models around connectivity, automation, and predictive intelligence. In practice, it includes the adoption of smart port technologies such as the Internet of Things, 5G communication networks, digital twins, blockchain-based trade documentation, and artificial intelligence applied to vessel scheduling and cargo planning. It also encompasses collaborative platforms like port community systems that link shipping companies, terminal operators, freight forwarders, customs, and hinterland transport providers into data-driven ecosystems. The purpose of digital transformation is not only to improve efficiency and reduce operational bottlenecks, but also to enhance resilience against disruptions, ensure sustainability in line with decarbonization goals, and reposition ports as orchestrators of trade networks rather than passive providers of physical infrastructure. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
Show Figures

Figure 1

26 pages, 2427 KB  
Article
Alternating Optimization-Based Joint Power and Phase Design for RIS-Empowered FANETs
by Muhammad Shoaib Ayub, Renata Lopes Rosa and Insoo Koo
Drones 2026, 10(1), 66; https://doi.org/10.3390/drones10010066 - 19 Jan 2026
Viewed by 137
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with flying ad hoc networks (FANETs) offers new opportunities to enhance performance in aerial communications. This paper proposes a novel FANET architecture in which each unmanned aerial vehicle (UAV) or drone is equipped with an RIS [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with flying ad hoc networks (FANETs) offers new opportunities to enhance performance in aerial communications. This paper proposes a novel FANET architecture in which each unmanned aerial vehicle (UAV) or drone is equipped with an RIS comprising M passive elements, enabling dynamic manipulation of the wireless propagation environment. We address the joint power allocation and RIS configuration problem to maximize the sum spectral efficiency, subject to constraints on maximum transmit power and unit-modulus phase shifts. The formulated optimization problem is non-convex due to coupled variables and interference. We develop an alternating optimization-based joint power and phase shift (AO-JPPS) algorithm that decomposes the problem into two subproblems: power allocation via successive convex approximation and phase optimization via Riemannian manifold optimization. A key contribution is addressing the RIS coupling effect, where the configuration of each RIS simultaneously influences multiple communication links. Complexity analysis reveals polynomial-time scalability, while derived performance bounds provide theoretical insights. Numerical simulations demonstrate that our approach achieves significant spectral efficiency gains over conventional FANETs, establishing the effectiveness of RIS-assisted drone networks for future wireless applications. Full article
Show Figures

Figure 1

23 pages, 3559 KB  
Article
From Static Prediction to Mindful Machines: A Paradigm Shift in Distributed AI Systems
by Rao Mikkilineni and W. Patrick Kelly
Computers 2025, 14(12), 541; https://doi.org/10.3390/computers14120541 - 10 Dec 2025
Viewed by 1025
Abstract
A special class of complex adaptive systems—biological and social—thrive not by passively accumulating patterns, but by engineering coherence, i.e., the deliberate alignment of prior knowledge, real-time updates, and teleonomic purposes. By contrast, today’s AI stacks—Large Language Models (LLMs) wrapped in agentic toolchains—remain rooted [...] Read more.
A special class of complex adaptive systems—biological and social—thrive not by passively accumulating patterns, but by engineering coherence, i.e., the deliberate alignment of prior knowledge, real-time updates, and teleonomic purposes. By contrast, today’s AI stacks—Large Language Models (LLMs) wrapped in agentic toolchains—remain rooted in a Turing-paradigm architecture: statistical world models (opaque weights) bolted onto brittle, imperative workflows. They excel at pattern completion, but they externalize governance, memory, and purpose, thereby accumulating coherence debt—a structural fragility manifested as hallucinations, shallow and siloed memory, ad hoc guardrails, and costly human oversight. The shortcoming of current AI relative to human-like intelligence is therefore less about raw performance or scaling, and more about an architectural limitation: knowledge is treated as an after-the-fact annotation on computation, rather than as an organizing substrate that shapes computation. This paper introduces Mindful Machines, a computational paradigm that operationalizes coherence as an architectural property rather than an emergent afterthought. A Mindful Machine is specified by a Digital Genome (encoding purposes, constraints, and knowledge structures) and orchestrated by an Autopoietic and Meta-Cognitive Operating System (AMOS) that runs a continuous Discover–Reflect–Apply–Share (D-R-A-S) loop. Instead of a static model embedded in a one-shot ML pipeline or deep learning neural network, the architecture separates (1) a structural knowledge layer (Digital Genome and knowledge graphs), (2) an autopoietic control plane (health checks, rollback, and self-repair), and (3) meta-cognitive governance (critique-then-commit gates, audit trails, and policy enforcement). We validate this approach on the classic Credit Default Prediction problem by comparing a traditional, static Logistic Regression pipeline (monolithic training, fixed features, external scripting for deployment) with a distributed Mindful Machine implementation whose components can reconfigure logic, update rules, and migrate workloads at runtime. The Mindful Machine not only matches the predictive task, but also achieves autopoiesis (self-healing services and live schema evolution), explainability (causal, event-driven audit trails), and dynamic adaptation (real-time logic and threshold switching driven by knowledge constraints), thereby reducing the coherence debt that characterizes contemporary ML- and LLM-centric AI architectures. The case study demonstrates “a hybrid, runtime-switchable combination of machine learning and rule-based simulation, orchestrated by AMOS under knowledge and policy constraints”. Full article
(This article belongs to the Special Issue Cloud Computing and Big Data Mining)
Show Figures

Figure 1

22 pages, 10664 KB  
Article
Performance Enhancement of Low-Altitude Intelligent Network Communications Using Spherical-Cap Reflective Intelligent Surfaces
by Hengyi Sun, Xingcan Feng, Weili Guo, Xiaochen Zhang, Yuze Zeng, Guoshen Tan, Yong Tan, Changjiang Sun, Xiaoping Lu and Liang Yu
Electronics 2025, 14(24), 4848; https://doi.org/10.3390/electronics14244848 - 9 Dec 2025
Viewed by 421
Abstract
Unmanned Aerial Vehicles (UAVs) are integral components of future 6G networks, offering rapid deployment, enhanced line-of-sight communication, and flexible coverage extension. However, UAV communications in low-altitude environments face significant challenges, including rapid link variations due to attitude instability, severe signal blockage by urban [...] Read more.
Unmanned Aerial Vehicles (UAVs) are integral components of future 6G networks, offering rapid deployment, enhanced line-of-sight communication, and flexible coverage extension. However, UAV communications in low-altitude environments face significant challenges, including rapid link variations due to attitude instability, severe signal blockage by urban obstacles, and critical sensitivity to transmitter–receiver alignment. While traditional planar reconfigurable intelligent surfaces (RIS) show promise for mitigating these issues, they exhibit inherent limitations such as angular sensitivity and beam squint in wideband scenarios, compromising reliability in dynamic UAV scenarios. To address these shortcomings, this paper proposes and evaluates a spherical-cap reflective intelligent surface (ScRIS) specifically designed for dynamic low-altitude communications. The intrinsic curvature of the ScRIS enables omnidirectional reflection capabilities, significantly reducing sensitivity to UAV attitude variations. A rigorous analytical model founded on Generalized Sheet Transition Conditions (GSTCs) is developed to characterize the electromagnetic scattering of the curved metasurface. Three distinct 1-bit RIS unit cell coding arrangements, namely alternate, chessboard, and random, are investigated via numerical simulations utilizing CST Microwave Studio and experimental validation within a mechanically stirred reverberation chamber. Our results demonstrate that all tested ScRIS coding patterns markedly enhance electromagnetic field uniformity within the chamber and reduce the lowest usable frequency (LUF) by approximately 20% compared to a conventional metallic spherical reflector. Notably, the random coding pattern maximizes phase entropy, achieves the most uniform scattering characteristics and substantially reduces spatial field autocorrelation. Furthermore, the combined curvature and coding functionality of the ScRIS facilitates simultaneous directional focusing and diffuse scattering, thereby improving multipath diversity and spatial coverage uniformity. This effectively mitigates communication blind spots commonly encountered in UAV applications, providing a resilient link environment despite UAV orientation changes. To validate these findings in a practical context, we conduct link-level simulations based on a reproducible system model at 3.5 GHz, utilizing electromagnetic scale invariance to bridge the fundamental scattering properties observed in the RC to the application band. The results confirm that the ScRIS architecture can enhance link throughput by nearly five-fold at a 10 km range compared to a baseline scenario without RIS. We also propose a practical deployment strategy for urban blind-spot compensation, discuss hybrid planar-curved architectures, and conduct an in-depth analysis of a DRL-based adaptive control framework with explicit convergence and complexity analysis. Our findings validate the significant potential of ScRIS as a passive, energy-efficient solution for enhancing communication stability and coverage in multi-band 6G networks. Full article
(This article belongs to the Special Issue 5G Technology for Internet of Things Applications)
Show Figures

Figure 1

24 pages, 2143 KB  
Article
Symmetry-Aided Active RIS for Physical Layer Security in WSN-Integrated Cognitive Radio Networks: Green Interference Regulation and Joint Beamforming Optimization
by Yixuan Wu
Symmetry 2025, 17(12), 2047; https://doi.org/10.3390/sym17122047 - 1 Dec 2025
Viewed by 297
Abstract
Driven by 5G/6G and the Internet of Things (IoT), wireless sensor networks (WSNs) are confronted with core challenges such as limited energy constraints, unbalanced resource allocation, and security vulnerabilities. To address these, WSNs are integrated with cognitive radio networks (CRNs) to alleviate spectrum [...] Read more.
Driven by 5G/6G and the Internet of Things (IoT), wireless sensor networks (WSNs) are confronted with core challenges such as limited energy constraints, unbalanced resource allocation, and security vulnerabilities. To address these, WSNs are integrated with cognitive radio networks (CRNs) to alleviate spectrum scarcity, and reconfigurable intelligent surfaces (RIS) are adopted to enhance performance, but traditional passive RIS suffers from “double fading” (signal path loss from transmitter to RIS and RIS to receiver), which undermines WSNs’ energy efficiency and the physical layer security (PLS) (e.g., secrecy rate, SR) of primary users (PUs) in CRNs. This study leverages symmetry to develop an active RIS framework for WSN-integrated CRNs, constructing a tripartite collaborative model where symmetric beamforming and resource allocation improve WSN connectivity, reduce energy consumption, and strengthen PLS. Specifically, three symmetry types—resource allocation symmetry, beamforming structure symmetry, and RIS reflection matrix symmetry—are formalized mathematically. These symmetries reduce the degrees of freedom in optimization (e.g., cutting precoding complexity by ~50%) and enhance the directionality of green interference, while ensuring balanced resource use for WSN nodes. The core objective is to minimize total transmit power while satisfying constraints of PU SR, secondary user (SU) quality-of-service (QoS), and PU interference temperature, achieved by converting non-convex SR constraints into solvable second-order cone (SOC) forms and using an alternating optimization algorithm to iteratively refine CBS/PBS precoding matrices and active RIS reflection matrices, with active RIS generating directional “green interference” to suppress eavesdroppers without artificial noise, avoiding redundant energy use. Simulations validate its adaptability to WSN scenarios: 50% lower transmit power than RIS-free schemes (with four CBS antennas), 37.5–40% power savings as active RIS elements increase to 60, and a 40% lower power growth slope in multi-user WSN scenarios, providing a symmetry-aided, low-power solution for secure and efficient WSN-integrated CRNs to advance intelligent WSNs. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Wireless Sensor Networks)
Show Figures

Figure 1

15 pages, 2802 KB  
Article
A Low-Complexity Hybrid Phase Shifter Network with Shared-Control Voltage for High-Scan-Gain Phased Arrays
by Xin Ma, Hansheng Su, Renke Huang and Deshuang Zhao
Electronics 2025, 14(23), 4605; https://doi.org/10.3390/electronics14234605 - 24 Nov 2025
Viewed by 504
Abstract
This article presents a low-complexity hybrid phase shifter network (PSN) with a shared-control voltage architecture for high-gain phased arrays. The proposed system integrates a 1-bit reconfigurable antenna and a voltage-controlled phase shifter in each channel, achieving continuous 360° phase tuning with low insertion [...] Read more.
This article presents a low-complexity hybrid phase shifter network (PSN) with a shared-control voltage architecture for high-gain phased arrays. The proposed system integrates a 1-bit reconfigurable antenna and a voltage-controlled phase shifter in each channel, achieving continuous 360° phase tuning with low insertion loss (below−1.2 dB) and small amplitude fluctuation (±0.2 dB). A single analog control voltage, distributed through reconfigurable passive resistor dividers, replaces per-channel bias sources, significantly reducing hardware complexity. A genetic algorithm is employed to optimize division ratio vectors for beam steering across a wide angular range while enhancing main-lobe gain. Simulation and experimental results show that compared with a conventional 1-bit PSN, the proposed architecture achieved up to 3.6 dB main-lobe gain enhancement while requiring only two additional control lines. This design offers an effective trade-off between performance and implementation cost for large-scale phased array systems. Full article
Show Figures

Figure 1

21 pages, 764 KB  
Article
Secrecy Rate Maximization for Movable Antenna-Aided STAR-RIS in Integrated Sensing and Communication Systems
by Guanyi Chen, Gang Wang, Jinlong Wang, Donglai Zhao, Chenxu Wang, Tao Jin and Zhiquan Zhou
Entropy 2025, 27(12), 1180; https://doi.org/10.3390/e27121180 - 21 Nov 2025
Viewed by 682
Abstract
Movable antennas (MAs) and simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have recently been investigated to enhance integrated sensing and communication (ISAC) systems. However, prior work has not exploited the spatial flexibility of MAs and the extended coverage of STAR-RIS to simultaneously [...] Read more.
Movable antennas (MAs) and simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have recently been investigated to enhance integrated sensing and communication (ISAC) systems. However, prior work has not exploited the spatial flexibility of MAs and the extended coverage of STAR-RIS to simultaneously address security issues. In this paper, a novel MA- and STAR-RIS-assisted secure ISAC system is proposed that involves multiple legitimate users and potential eavesdroppers. To ensure fairness, we formulate a minimum secrecy rate maximization problem by jointly optimizing the active beamforming covariance matrices at the base station (BS), the passive transmitting and reflecting beamforming coefficients at the STAR-RIS, and the spatial positions of the MAs. To address the highly nonconvex optimization problem, we propose an efficient iterative algorithm based on the alternating optimization (AO) framework. Specifically, we leverage semidefinite relaxation (SDR) and successive convex approximation (SCA) techniques to solve the active and passive beamforming subproblems, and the SCA method is also applied to tackle the highly intractable MA position optimization subproblem. Numerical results demonstrate that the secure performance of the proposed MA and STAR-RIS-assisted scheme significantly outperforms that of other benchmark schemes, validating the benefits of the proposed algorithm. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication (ISAC) in 6G)
Show Figures

Figure 1

27 pages, 10165 KB  
Article
Capacity Enhancement of Optimized Deployment Active RISs-Assisted CF MIMO Networks
by Jingmin Tang, Xinglong Zhou, Mei Tao, Xuanzhi Zhao, Guicai Yu and Yaolian Song
Electronics 2025, 14(21), 4213; https://doi.org/10.3390/electronics14214213 - 28 Oct 2025
Viewed by 418
Abstract
Cell-free (CF) networks, with their distributed architecture of access points, offer considerable potential for improving spectral efficiency and expanding coverage. However, the need for dense access point deployment leads to high infrastructure cost and energy consumption. This paper incorporates active reconfigurable intelligent surfaces [...] Read more.
Cell-free (CF) networks, with their distributed architecture of access points, offer considerable potential for improving spectral efficiency and expanding coverage. However, the need for dense access point deployment leads to high infrastructure cost and energy consumption. This paper incorporates active reconfigurable intelligent surfaces (RISs)—a low-cost and energy-efficient technology—into cell-free multiple-input multiple-output (MIMO) systems to tackle these challenges and enhance network capacity. Unlike existing active RIS schemes, the proposed method optimizes the spatial configuration of the active elements under a fixed panel layout, harnessing element-level spatial freedom to suppress interference and improve system capacity. We establish a joint optimization framework for active element selection and precoding aimed at maximizing the weighted sum-rate (WSR). An adaptive tabu search (ATS) algorithm is applied to optimize the element topology, and a Lagrangian dual reformulation (LDR) method is introduced to handle the precoding optimization. Simulation results indicate that at a transmit power of 0dBm, the passive RIS yields only a 62.49% gain over the no-RIS baseline due to multiplicative fading, whereas the conventional active RIS achieves a 217.46% improvement and the proposed optimized deployment-active RIS further increases the gain to 269.43%; thus, our scheme delivers the most significant performance enhancement. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 2224 KB  
Article
Modelling, Design, and Control of a Central Motor Driving Reconfigurable Quadcopter
by Zhuhuan Wu, Ke Huang and Jiaying Zhang
Drones 2025, 9(11), 736; https://doi.org/10.3390/drones9110736 - 23 Oct 2025
Cited by 2 | Viewed by 907
Abstract
Constrained by fixed frame dimensions, conventional drones usually demonstrate insufficient capabilities to accommodate complex environments. However, the reconfigurable drone can address this limitation through its deformable frame equipped with actuators or passive interaction mechanisms. Nevertheless, these additional components may introduce an excessive weight [...] Read more.
Constrained by fixed frame dimensions, conventional drones usually demonstrate insufficient capabilities to accommodate complex environments. However, the reconfigurable drone can address this limitation through its deformable frame equipped with actuators or passive interaction mechanisms. Nevertheless, these additional components may introduce an excessive weight burden, which conflicts with the lightweight objective in aircraft design. In this work, we propose a novel reconfigurable quadrotor inspired by the swimming morphology of jellyfish, with only one actuator placed at the centre of the frame to achieve significant morphological reconfiguration. In the design of the morphing mechanism, three telescopic sleeves are driven by the actuator, enabling arms’ rotation to achieve a maximum projected area reduction of 55%. The nested design of sleeves ensures a sufficient morphing range while maintaining structural compactness in the fully deployed mode. Furthermore, key structural dimensions are optimized, reducing the central motor load by up to 65% across configurations. After deriving parameter variations during morphing, Proportion–Integration–Differentiation (PID) controllers are implemented and flight simulations are conducted in MATLAB. Results confirm the drone’s sustained controllability during and after reconfiguration, with an “8”-shaped trajectory tracking root mean square error (RMSE) of 0.109 m and successful traversal through long narrow slits, reducing mission duration under certain conditions. Full article
Show Figures

Figure 1

15 pages, 584 KB  
Article
A Scheme for Covert Communication with a Reconfigurable Intelligent Surface in Cognitive Radio Networks
by Yan Xu, Jin Qian and Pengcheng Zhu
Sensors 2025, 25(20), 6490; https://doi.org/10.3390/s25206490 - 21 Oct 2025
Viewed by 948
Abstract
This paper proposes a scheme for enhancing covert communication in cognitive radio networks (CRNs) using a reconfigurable intelligent surface (RIS), which ensures that transmissions by secondary users (SUs) remains statistically undetectable by adversaries (e.g., wardens like Willie). However, there exist stringent challenges in [...] Read more.
This paper proposes a scheme for enhancing covert communication in cognitive radio networks (CRNs) using a reconfigurable intelligent surface (RIS), which ensures that transmissions by secondary users (SUs) remains statistically undetectable by adversaries (e.g., wardens like Willie). However, there exist stringent challenges in CRNs due to the dual constraints of avoiding detection and preventing harmful interference to primary users (PUs). Leveraging the RIS’s ability to dynamically reconfigure the wireless propagation environment, our scheme jointly optimizes the SU’s transmit power, communication block length, and RIS’s passive beamforming (phase shifts) to maximize the effective covert throughput (ECT) under rigorous covertness constraints quantified by detection error probability or relative entropy while strictly adhering to PU interference limits. Crucially, the RIS configuration is explicitly designed to simultaneously enhance signal quality at the legitimate SU receiver and degrade signal quality at the warden, thereby relaxing the inherent trade-off between covertness and throughput imposed by the fundamental square root law. Furthermore, we analyze the impact of unequal transmit prior probabilities (UTPPs), demonstrating their superiority over equal priors (ETPPs) in flexibly balancing throughput and covertness, and extend the framework to practical scenarios with Poisson packet arrivals typical of IoT networks. Extensive results confirm that RIS assistance significantly boosts ECT compared to non-RIS baselines and establishes the RIS as a key enabler for secure and spectrally efficient next-generation cognitive networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Green Cores as Architectural and Environmental Anchors: A Performance-Based Framework for Residential Refurbishment in Novi Sad, Serbia
by Marko Mihajlovic, Jelena Atanackovic Jelicic and Milan Rapaic
Sustainability 2025, 17(19), 8864; https://doi.org/10.3390/su17198864 - 3 Oct 2025
Viewed by 1032
Abstract
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems [...] Read more.
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems were reconfigured to embed vegetated zones within the architectural core. Light exposure, ventilation potential and spatial coherence were maximized through data-driven design strategies and structural modifications. Integrated planting modules equipped with PAR-specific LED systems ensure sustained vegetation growth, while embedded environmental infrastructure supports automated irrigation and continuous microclimate monitoring. This plant-centered spatial model is evaluated using quantifiable performance metrics, establishing a replicable framework for optimized indoor ecosystems. Photosynthetically active radiation (PAR)-specific LED systems and embedded environmental infrastructure were incorporated to maintain vegetation viability and enable microclimate regulation. A programmable irrigation system linked to environmental sensors allows automated resource management, ensuring efficient plant sustenance. The configuration is assessed using measurable indicators such as daylight factor, solar exposure, passive thermal behavior and similar elements. Additionally, a post-occupancy expert assessment was conducted with several architects evaluating different aspects confirming the architectural and spatial improvements achieved through the refurbishment. This study not only demonstrates a viable architectural prototype but also opens future avenues for the development of metabolically active buildings, integration with decentralized energy and water systems, and the computational optimization of living infrastructure across varying climatic zones. Full article
(This article belongs to the Special Issue Advances in Ecosystem Services and Urban Sustainability, 2nd Edition)
Show Figures

Figure 1

18 pages, 12224 KB  
Article
A Phase-Adjustable Noise-Shaping SAR ADC for Mitigating Parasitic Capacitance Effects from PIP Capacitors
by Xuelong Ouyang, Hua Kuang, Dalin Kong, Zhengxi Cheng and Honghui Yuan
Sensors 2025, 25(19), 6029; https://doi.org/10.3390/s25196029 - 1 Oct 2025
Viewed by 789
Abstract
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a [...] Read more.
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a reconfigurable architecture. The design utilizes a phase-adjustable logic unit to switch between a conventional SAR mode for high-speed operation and a noise-shaping (NS) SAR mode for high-resolution conversion, actively suppressing in-band quantization noise. An improved SAR logic unit facilitates the insertion of an adjustable phase while concurrently achieving an 86% area reduction in the core logic block. A prototype was fabricated and measured in a 0.35-µm CMOS process. In conventional mode, the ADC achieved a 7.69-bit effective number of bits at 2 MS/s. By activating the noise-shaping circuitry, performance was significantly enhanced to an 11.06-bit resolution, corresponding to a signal-to-noise-and-distortion ratio (SNDR) of 68.3 dB, at a 125 kS/s sampling rate. The results demonstrate that the proposed architecture effectively leverages the trade-off between speed and accuracy, providing a practical method for realizing high-performance ADCs despite the inherent limitations of non-ideal passive components. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 2725 KB  
Article
Physics-Guided Neural Surrogate Model with Particle Swarm-Based Multi-Objective Optimization for Quasi-Coaxial TSV Interconnect Design
by Zheng Liu, Guangbao Shan, Zeyu Chen and Yintang Yang
Micromachines 2025, 16(10), 1134; https://doi.org/10.3390/mi16101134 - 30 Sep 2025
Cited by 1 | Viewed by 841
Abstract
In reconfigurable radio frequency (RF) microsystems, the interconnect structure critically affects high-frequency signal integrity, and the accuracy of electromagnetic (EM) modeling directly determines the overall system performance. Conventional neural network-based surrogate models mainly focus on minimizing numerical errors, while neglecting essential physical constraints, [...] Read more.
In reconfigurable radio frequency (RF) microsystems, the interconnect structure critically affects high-frequency signal integrity, and the accuracy of electromagnetic (EM) modeling directly determines the overall system performance. Conventional neural network-based surrogate models mainly focus on minimizing numerical errors, while neglecting essential physical constraints, such as causality and passivity, thereby limiting their applicability in both time and frequency domains. This paper proposes a physics-constrained Neuro-Transfer surrogate model with a broadband output architecture to directly predict S-parameters over the 1–50 GHz range. Causality and passivity are enforced through dedicated regularization terms during training. Furthermore, a particle swarm optimization (PSO)-based multi-objective intelligent optimization framework is developed, incorporating fixed-weight normalization and a linearly decreasing inertia weight strategy to simultaneously optimize the S11, S21, and S22 performance of a quasi-coaxial TSV composite structure. Target values are set to −25 dB, −0.54 dB, and −24 dB, respectively. The optimized structural parameters yield prediction-to-simulation deviations below 1 dB, with an average prediction error of 2.11% on the test set. Full article
Show Figures

Figure 1

Back to TopTop