Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = passivation of defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2398 KiB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 46
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

13 pages, 3980 KiB  
Article
Research on the Synergistic Evolution Law of Microstructure and Properties of Deformed Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Zi Li, Haiteng Xiu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(7), 845; https://doi.org/10.3390/coatings15070845 - 18 Jul 2025
Viewed by 134
Abstract
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of [...] Read more.
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of steel is revealed. As a result, it was found that with the increase in deformation, the grains of 304 steel were destroyed, and many small subgrains were generated internally, resulting in a significant decrease in grain size. At the same time, the content of martensitic transformation in stainless steel increased significantly. The characteristics of the surface passivation film of stainless steel also change during the deformation process. Meanwhile, with the increase in deformation, the nanohardness and wear resistance of 304 steel gradually increase, but its corrosion resistance gradually decreases. Analysis suggests that microstructural changes such as grain size and phase transformation in stainless steel lead to an improvement in its mechanical properties, while the generation of defects during deformation and changes in surface passivation film characteristics result in a deterioration of its corrosion resistance. This study can provide a reference for the forming and performance optimization of metals and has high theoretical significance and practical value. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

16 pages, 609 KiB  
Article
Enhancing Software Defect Prediction Using Ensemble Techniques and Diverse Machine Learning Paradigms
by Ayesha Siddika, Momotaz Begum, Fahmid Al Farid, Jia Uddin and Hezerul Abdul Karim
Eng 2025, 6(7), 161; https://doi.org/10.3390/eng6070161 - 15 Jul 2025
Viewed by 544
Abstract
In today’s fast-paced world of software development, it is essential to ensure that programs run smoothly without any issues. When dealing with complex applications, the objective is to predict and resolve problems before they escalate. The prediction of software defects is a crucial [...] Read more.
In today’s fast-paced world of software development, it is essential to ensure that programs run smoothly without any issues. When dealing with complex applications, the objective is to predict and resolve problems before they escalate. The prediction of software defects is a crucial element in maintaining the stability and reliability of software systems. This research addresses this need by combining advanced techniques (ensemble techniques) with seventeen machine learning algorithms for predicting software defects, categorised into three types: semi-supervised, self-supervised, and supervised. In supervised learning, we mainly experimented with several algorithms, including random forest, k-nearest neighbors, support vector machines, logistic regression, gradient boosting, AdaBoost classifier, quadratic discriminant analysis, Gaussian training, decision tree, passive aggressive, and ridge classifier. In semi-supervised learning, we tested are autoencoders, semi-supervised support vector machines, and generative adversarial networks. For self-supervised learning, we utilized are autoencoder, simple framework for contrastive learning of representations, and bootstrap your own latent. After comparing the performance of each machine learning algorithm, we identified the most effective one. Among these, the gradient boosting AdaBoost classifier demonstrated superior performance based on an accuracy of 90%, closely followed by the AdaBoost classifier at 89%. Finally, we applied ensemble methods to predict software defects, leveraging the collective strengths of these diverse approaches. This enables software developers to significantly enhance defect prediction accuracy, thereby improving overall system robustness and reliability. Full article
Show Figures

Figure 1

15 pages, 1099 KiB  
Article
Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
by Ibtisam S. Almalki, Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, Bader Alharthi, Abdulaziz Aljuwayr, Faisal S. Alghannam, Anas A. Almuqhim, Huda Alkhaldi, Fawziah Alhajri, Nouf K. AL-Saleem, Masfer Alkahtani, Anwar Q. Alanazi and Masaud Almalki
Nanomaterials 2025, 15(14), 1078; https://doi.org/10.3390/nano15141078 - 11 Jul 2025
Viewed by 373
Abstract
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium [...] Read more.
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium iodide (PEAI) surface passivation layer is introduced on the perovskite to form a two-dimensional capping layer, and its impact on device performance and stability is systematically studied. The champion PEAI-passivated flexible device achieves a power conversion efficiency (PCE) of ~16–17%, compared to ~14% for the control device without PEAI. The improvement is primarily due to an increased open-circuit voltage and fill factor, reflecting effective surface defect passivation and improved charge carrier dynamics. Importantly, mechanical bending tests demonstrate robust flexibility: the PEAI-passivated cells retain ~85–90% of their initial efficiency after 700 bending cycles (radius ~5 mm), significantly higher than the ~70% retention of unpassivated cells. This work showcases that integrating a PEAI surface treatment with optimized electron (SnO2) and hole (spiro-OMeTAD) transport layers (ETL and HTL) can simultaneously enhance the efficiency and mechanical durability of FPSCs. These findings pave the way for more reliable and high-performance flexible solar cells for wearable and portable energy applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

9 pages, 1221 KiB  
Article
High-Performance GaN-Based Green Flip-Chip Mini-LED with Lattice-Compatible AlN Passivation Layer
by Jiahao Song, Lang Shi, Siyuan Cui, Lingyue Meng, Qianxi Zhou, Jingjing Jiang, Conglong Jin, Jiahui Hu, Kuosheng Wen and Shengjun Zhou
Nanomaterials 2025, 15(13), 1048; https://doi.org/10.3390/nano15131048 - 5 Jul 2025
Viewed by 366
Abstract
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) [...] Read more.
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) efficiency of mini-LEDs. Since AlN has a closer lattice match to GaN compared to other heterogeneous passivation materials, we boosted the EQE of GaN-based green flip-chip mini-LEDs through the deposition of a lattice-compatible AlN passivation layer through atomic layer deposition (ALD) and a SiO2 passivation layer through plasma-enhanced chemical vapor deposition (PECVD). Benefiting from reduced sidewall nonradiative recombination, the EQE of the green flip-chip mini-LED with a composite ALD-AlN/PECVD-SiO2 passivation layer reached 34.14% at 5 mA, which is 34.6% higher than that of the green flip-chip mini-LED with a single PECVD-SiO2 passivation layer. The results provide guidance for the realization of high-performance mini-LEDs by selecting lattice-compatible passivation layers. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

35 pages, 3949 KiB  
Review
The Influence of Defect Engineering on the Electronic Structure of Active Centers on the Catalyst Surface
by Zhekun Zhang, Yankun Wang, Tianqi Guo and Pengfei Hu
Catalysts 2025, 15(7), 651; https://doi.org/10.3390/catal15070651 - 3 Jul 2025
Viewed by 590
Abstract
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry [...] Read more.
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry of crystalline lattices, enabling new pathways for optimizing catalysis performance. This review systematically summarizes the mechanisms underlying defect-mediated electronic structure at active sites regulation, including (1) reconstruction of the electronic density of states, (2) tuning of coordination microenvironments, (3) charge transfer and localization effects, (4) spin-state and magnetic coupling modulation, and (5) dynamic defect and interface engineering. These mechanisms elucidate how defect-induced electronic restructuring governs catalytic activity and selectivity. We further assess advanced characterization techniques and computational methodologies for probing defects-induced electronic states, offering deeper mechanistic insights at atomic scales. Finally, we highlight recent breakthroughs in defect-engineered nanomaterials for catalytic applications, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and beyond, while discussing existing challenges in scalability, defect stability, and structure–property causality. This review aims to provide actionable principles for the rational design of defects to tailor electronic structures toward next-generation energy technologies. Full article
Show Figures

Graphical abstract

22 pages, 3862 KiB  
Review
Rail Maintenance, Sensor Systems and Digitalization: A Comprehensive Review
by Higinio Gonzalez-Jorge, Eduardo Ríos-Otero, Enrique Aldao, Eduardo Balvís, Fernando Veiga-López and Gabriel Fontenla-Carrera
Future Transp. 2025, 5(3), 83; https://doi.org/10.3390/futuretransp5030083 - 1 Jul 2025
Viewed by 284
Abstract
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound, [...] Read more.
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound, eddy currents, active and passive optical elements, accelerometers, and ground penetrating radar. Each sensor type is evaluated in terms of its advantages and limitations. Examples of mobile inspection platforms are provided, ranging from laboratory trains to draisines and track trolleys. The authors foresee future trends in railway inspection, including the implementation of IoT sensors, autonomous robots, and geospatial intelligence technologies. It is anticipated that the integration of sensors within both infrastructure and rolling stock will enhance maintenance and safety, with an increased utilization of autonomous robotic systems for hazardous and hard-to-reach areas. Full article
Show Figures

Figure 1

15 pages, 2226 KiB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 443
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

12 pages, 3592 KiB  
Article
Membrane-Embedded Anti-Cancer Peptide Causes a Minimal Structural Perturbation That Is Sufficient to Enhance Phospholipid Flip-Flop and Charge Permeation Rates
by Alfredo E. Cardenas and Ron Elber
Life 2025, 15(7), 1007; https://doi.org/10.3390/life15071007 - 25 Jun 2025
Viewed by 364
Abstract
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents [...] Read more.
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents the permeation of hydrophilic, well-solvated molecules across the lipid hydrophobic barrier. The barrier is not absolute, and several approaches are available for efficient translocation. Channels and pumps enable selective and efficient transport across membranes. Another transport mechanism is passive permeation, in which permeants, without assistance, directly transport across membranes. Passive transport is coupled to transient defects in the membrane structure that make crossing the hydrophobic bilayer easier—for example, displacements of head groups from aqueous solution–membrane interface into the membrane core. The defects, in turn, are rare unless assisted by passively permeating molecules such as cell-penetrating peptides that distort the membrane structure. One possible defect is a phospholipid molecule with a head pointing to the hydrophobic core. This membrane distortion allows head group flipping from one layer to the other. We show computationally, using atomically detailed simulations and the Milestoning theory, that the presence of a cell-penetrating peptide in a membrane greatly increases phospholipid flip-flop rate and hence defect formation and the permeability of membranes. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

14 pages, 4844 KiB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 503
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

12 pages, 2346 KiB  
Article
Impact of Cetyl-Containing Ionic Liquids on Metal Halide Perovskite Structure and Photoluminescence
by Maegyn A. Grubbs, Roberto Gonzalez-Rodriguez, Sergei V. Dzyuba, Benjamin G. Janesko and Jeffery L. Coffer
Nanomaterials 2025, 15(13), 964; https://doi.org/10.3390/nano15130964 - 21 Jun 2025
Viewed by 509
Abstract
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing [...] Read more.
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing pyridinium, imidazolium, or pyrrolidinium ILs. Two different film deposition methods are compared, with the resultant films characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. For the latter, the differences in PL intensity of the perovskite are quantified using photoluminescence quantum efficiency (PLQE) measurements. It is found that a spin coating method in conjunction with the use of an imidazolium-containing IL (for a given precursor concentration) produces the strongest emissive perovskite. This optimal enhancement is attributed to a function of accessible surface charges associated with the heterocyclic cation of a given IL and perovskite defect passivation by bromide, the latter elucidated with the help of density functional theory. Proof-of-concept device fabrication is demonstrated for the case of a light emitting diode (LED) with the IL present in the emissive perovskite layer. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Graphical abstract

12 pages, 2301 KiB  
Article
Unveiling the Hydrogen Diffusion During Degradation of Silicon Solar Cells
by MyeongSeob Sim, Yejin Gu, Donghwan Kim and Yoonmook Kang
Energies 2025, 18(12), 3090; https://doi.org/10.3390/en18123090 - 12 Jun 2025
Viewed by 371
Abstract
We investigated monocrystalline passivated emitter rear contact cells for light- and elevated-temperature-induced degradation. Among the cell performance factors, a short current density results in a significant decrease in the short term. The quantum efficiency is also affected by carrier recombination-active defects, especially in [...] Read more.
We investigated monocrystalline passivated emitter rear contact cells for light- and elevated-temperature-induced degradation. Among the cell performance factors, a short current density results in a significant decrease in the short term. The quantum efficiency is also affected by carrier recombination-active defects, especially in the case of the reference cell, which has a decreased quantum efficiency across the wavelength, unlike the commercial cell. The front side of the cell has a diffuse hydrogen distribution, and it is related to LeTID. We observe how the hydrogen changes during each process and the changes in the profile during the degradation. The hydrogen appears to redistribute within the silicon wafer and saturate at a certain equilibrium state. The hydrogen distribution is correlated with the changes in the lifetime and, finally, short current density. Regeneration occurs depending on the hydrogen concentration within the emitter, and the closer the concentration is to saturation, the less degradation occurs. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

16 pages, 2160 KiB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Viewed by 612
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

14 pages, 2098 KiB  
Article
Surface In Situ Growth of Two-Dimensional/Three-Dimensional Heterojunction Perovskite Film for Achieving High-Performance Flexible Perovskite Solar Cells
by Zhiyu Zhang, Huijing Liu, Jing Liu, Jia Xu, Zhan’ao Tan and Jianxi Yao
Nanomaterials 2025, 15(11), 798; https://doi.org/10.3390/nano15110798 - 26 May 2025
Viewed by 435
Abstract
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to [...] Read more.
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to grow in situ two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films. Through comprehensive physicochemical characterization, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) mapping, we demonstrated that CMBACl treatment enabled the in situ growth of two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films via chemical interactions between CMBA+ cations and undercoordinated Pb2+ sites. The organic cation (CMBA+) bound to uncoordinated Pb2+ ions and residual PbI2, while the chlorine anion (Cl) filled iodine vacancies in the perovskite lattice, thereby forming a high-quality 2D/3D heterojunction structure. The CMBACl treatment effectively passivated surface defects in the perovskite films, prolonged charge carrier lifetimes, and enhanced the operational stability of the photovoltaic devices. Additionally, the hybrid 2D/3D architecture also improved energy band matching, thereby boosting charge transfer performance. The optimized flexible devices demonstrated a PCE of 23.15%, while retaining over 82% of their initial efficiency after enduring 5000 bending cycles under a 5 mm curvature radius (R = 5 mm). The unpackaged devices retained 94% of their initial efficiency after 1000 h under ambient conditions with a relative humidity (RH) of 45 ± 5%. This strategy offers practical guidelines for selecting interface passivation materials to enhance the efficiency and stability of F-PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

10 pages, 2024 KiB  
Article
Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells
by Huaxi Gao, Yu Zhang, Ihtesham Ghani, Min Xin, Danish Khan, Junyu Wang, Di Lu, Tao Cao, Wei Chen, Xin Yang and Zeguo Tang
Nanomaterials 2025, 15(10), 766; https://doi.org/10.3390/nano15100766 - 20 May 2025
Viewed by 452
Abstract
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer [...] Read more.
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb–N coordination bonds with undercoordinated Pb2+ but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a VOC enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

Back to TopTop