Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = particulate matter (PM) removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4587 KB  
Article
Evaluation of Filter Types for Trace Element Analysis in Brake Wear PM10: Analytical Challenges and Recommendations
by Aleandro Diana, Mery Malandrino, Riccardo Cecire, Paolo Inaudi, Agnese Giacomino, Ornella Abollino, Agusti Sin and Stefano Bertinetti
Molecules 2025, 30(24), 4816; https://doi.org/10.3390/molecules30244816 - 18 Dec 2025
Viewed by 393
Abstract
Accurate analysis of trace elements in particulate matter (PM) emitted by brake systems critically depends on the filter selection and handling processes, which can significantly impact analytical results due to contamination and elemental interference from filter elemental composition. This study systematically evaluated two [...] Read more.
Accurate analysis of trace elements in particulate matter (PM) emitted by brake systems critically depends on the filter selection and handling processes, which can significantly impact analytical results due to contamination and elemental interference from filter elemental composition. This study systematically evaluated two widely used filter types, EMFAB (borosilicate glass microfiber reinforced with PTFE) and Teflon (PTFE), for their suitability in the trace element determination of brake-wear PM10 collected using a tribometer set-up. A total of twenty-three PM10 samples were analyzed, encompassing two different friction materials, to thoroughly assess the performance and analytical implications of each filter type. Filters were tested for their chemical background, handling practicality and potential contamination risk through extensive elemental analysis by inductively coupled plasma–optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, morphological characterization of both filter types was conducted via scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) to elucidate structural features affecting particle capture and subsequent analytical performance. Significant differences emerged between the two filters regarding elemental interferences: EMFAB filters exhibited substantial background contribution, particularly for alkali and alkaline earth metals (Ca, Na, Mg and K), complicating accurate quantification at trace levels. Conversely, Teflon filters demonstrated considerably lower background but required careful manipulation due to their structural fragility and the necessity to remove supporting rings, potentially introducing analytical variability. Statistical analysis confirmed that the filter material significantly affects elemental quantification, particularly when the collected PM10 mass is limited, highlighting the importance of careful filter selection and handling procedures. Recommendations for optimal analytical practices are provided to minimize contamination risks and enhance reliability in trace element analysis of PM10 emissions. These findings contribute to refining analytical methodologies essential for accurate environmental monitoring and regulatory assessments of vehicular non-exhaust emissions. Full article
(This article belongs to the Special Issue Advances in Trace Element Analysis: Techniques and Applications)
Show Figures

Figure 1

18 pages, 15168 KB  
Article
A Packed-Type Reconfigurable Air Filtration System for Removal of Particulate Matter and HCHO
by Eun Jin Kim, Seung Hee Han, Dong Geon Lee and Won San Choi
Polymers 2025, 17(24), 3312; https://doi.org/10.3390/polym17243312 - 15 Dec 2025
Viewed by 300
Abstract
A flexible and packed-type air filter ball (AFB) system was developed for the efficient removal of particulate matter (PM) and formaldehyde (HCHO). The Mg/Si-embedded AFB (Mg/Si-AFB) was synthesized through sequential physical etching of a sponge, oxidation of glass fiber, and subsequent formation of [...] Read more.
A flexible and packed-type air filter ball (AFB) system was developed for the efficient removal of particulate matter (PM) and formaldehyde (HCHO). The Mg/Si-embedded AFB (Mg/Si-AFB) was synthesized through sequential physical etching of a sponge, oxidation of glass fiber, and subsequent formation of Mg-Si components. The resulting Mg/Si-AFB exhibited a highly porous and roughened architecture with enhanced surface reactivity. A disk-type filtration device loaded with Mg/Si-AFBs demonstrated a PM2.5 removal efficiency (RE) of 97.4% at a pressure drop of 57 Pa. The RE increased with packing density and PM concentration and notably remained constant even at high air velocities (7 m/s). In addition, the oxidized glass fiber (GF)-based AFB (O-GF-AFB) exhibited rapid HCHO adsorption capability, achieving 100% HCHO removal within 1 min. Hybrid air filters combining Mg/Si-AFBs and O-GF-AFBs in an equal ratio (8:8) exhibited synergistic performance, simultaneously achieving 97.1% PM2.5 RE and complete HCHO removal within 1–6 min, while maintaining low pressure drops (55–57 Pa) over 50 reuse cycles. Full article
(This article belongs to the Special Issue Polymer Membranes for Gas and Liquid Filtration Techniques)
Show Figures

Graphical abstract

24 pages, 2980 KB  
Article
Monte Carlo Simulations as an Alternative for Solving Engineering Problems in Environmental Sciences: Three Case Studies
by Sergio Luis Parra-Angarita, Guillermo H. Gaviria, Juan F. Herrera-Ruiz and María del Carmen Márquez
ChemEngineering 2025, 9(6), 140; https://doi.org/10.3390/chemengineering9060140 - 9 Dec 2025
Viewed by 571
Abstract
Monte Carlo methods offer a fast, cost-effective approach for modeling environmental systems influenced by random variability. This study applied them to three abiotic cases: (I) water quality in a lentic surface water source, (II) sizing of a homogenization chamber for solid waste treatment, [...] Read more.
Monte Carlo methods offer a fast, cost-effective approach for modeling environmental systems influenced by random variability. This study applied them to three abiotic cases: (I) water quality in a lentic surface water source, (II) sizing of a homogenization chamber for solid waste treatment, and (III) removal of atmospheric particulate matter by rain. Deterministic models produced wide and inconsistent estimates: BOD5 concentrations from 5.28 to 19.81 mg/L (275% relative difference), chamber volumes from 24.12 to 116.53 m3, and particulate matter reductions with up to 60 µg/m3 per month variation. Monte Carlo simulations, by contrast, captured system variability and provided more robust outputs: a design value of 94.84 m3 for the homogenization chamber, narrower ranges for BOD5, and realistic distributions of atmospheric PM concentrations. Results show that reliance on average values introduces strong biases and mathematical incompatibilities, while the Monte Carlo approach yields quantitative predictions that are both accurate and operationally useful. This confirms its relevance as a practical tool for analyzing and designing environmental systems under uncertainty. Full article
(This article belongs to the Special Issue Innovative Approaches for the Environmental Chemical Engineering)
Show Figures

Graphical abstract

23 pages, 2089 KB  
Article
Can Micro/Nanoplastics Influence PM2.5 Characteristics: An Ex Situ Investigation by Physicochemical Indicators of PM2.5 and Their Bacterial Model Toxicity
by Hasan Saygin, Asli Baysal, Batuhan Tilkili and Sinem Karniyarik
Microplastics 2025, 4(4), 103; https://doi.org/10.3390/microplastics4040103 - 9 Dec 2025
Viewed by 474
Abstract
Exposure to PM2.5 and its associated micropollutants, including micro- and nanoplastics, has been strongly linked to adverse health effects in humans. The risk posed by micro/nanoplastics can be attributed to the particles themselves and their ability to leach into the surrounding environment. However, [...] Read more.
Exposure to PM2.5 and its associated micropollutants, including micro- and nanoplastics, has been strongly linked to adverse health effects in humans. The risk posed by micro/nanoplastics can be attributed to the particles themselves and their ability to leach into the surrounding environment. However, the impact of micro/nanoplastics on the surrounding environment through leaching is still underestimated. In this study, we conducted ex situ experiments involving micro/nanoplastics and PM2.5 at various particulate matter mass concentrations and exposure times (1–336 h). The micro/nanoplastics were then removed from the PM2.5 media, and the aromaticity, light absorption, zeta potential, and oxidative potential of the PM2.5 were measured. Furthermore, the toxicity of the PM2.5 was investigated using a bacterial model by Staphylococcus aureus. Changes in the aromaticity, light absorption, zeta potential, and oxidative potential of PM2.5 indicated the impact of the micro/nanoplastics on the PM2.5. For example, PM2.5 exhibited higher aromaticity in the initial exposure stages (2–4% and 9–11%), whereas its light absorption (0.5–6-fold) increased with prolonged exposure to micro/nanoplastics. Overall, more negative zeta potentials and higher oxidative inputs (~6–40%) were obtained in PM2.5 after micro/nanoplastic treatment. The bacterial model revealed that the viability and biofilm formation of bacteria were affected by PM2.5 exposed to micro/nanoplastics, compared to PM2.5 not exposed to micro/nanoplastics, for example, 0.5–2-fold higher bacterial activity with longer MNP exposure and 4–39% higher biofilm formation. Furthermore, the oxidative stress-related bacterial indicators were primarily influenced by the aromaticity, zeta potential, and oxidative potential of PM2.5. The results of this study suggest that the bacterium Staphylococcus aureus can adapt to PM2.5 contaminated with micro/nanoplastics. Therefore, this study highlights the potential impact of micro/nanoplastics on bacterial adaptation to environmental contaminants and antibiotic resistance via PM2.5. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

24 pages, 4123 KB  
Review
A Review of Simultaneous Catalytic Removal of NOx and VOCs: From Mechanism to Modification Strategy
by Zhongliang Tian, Xingjie Ding, Hua Pan, Qingquan Xue, Jun Chen and Chi He
Catalysts 2025, 15(12), 1114; https://doi.org/10.3390/catal15121114 - 30 Nov 2025
Cited by 2 | Viewed by 893
Abstract
Simultaneous catalytic elimination of nitrogen oxides (NOx) and volatile organic compounds (VOCs) represents a promising technology for addressing the synergistic pollution of fine particulate matters of <2.5 μm diameter (PM2.5) and O3. Nevertheless, it has been maintaining [...] Read more.
Simultaneous catalytic elimination of nitrogen oxides (NOx) and volatile organic compounds (VOCs) represents a promising technology for addressing the synergistic pollution of fine particulate matters of <2.5 μm diameter (PM2.5) and O3. Nevertheless, it has been maintaining significant challenges in practical implementation, particularly the inherent mismatch in temperature windows between NOx reduction and VOCs oxidation pathways, coupled with catalyst poisoning and deactivation phenomena. These limitations have hindered the industrial application of bifunctional catalysts for the removal of concurrent pollutant. This review systematically explored the fundamental mechanisms and functional roles of active sites in controlling synchronous catalytic processes. The mechanism of catalyst deactivation caused by multiple toxic substances has been comprehensively analyzed, including sulfur dioxide (SO2), water vapor (H2O), chlorine-containing species (Cl*), reaction by-products, and heavy metal contaminants. Furthermore, we critically evaluated the strategies of doping regulation, nanostructure engineering and morphology optimization to enhance the performance and toxicity resistance of catalysts. Meanwhile, emerging regeneration techniques and reactor design optimizations are discussed as potential solutions to improve the durability of catalysts. Based on the above critical aspects, this review aims to provide insights and guidelines for developing robust catalytic systems capable of controlling multi-pollutants in practical applications, and to offer theoretical guidance and technical solutions to bridge the gap between laboratory research and industrial environmental governance applications. Full article
(This article belongs to the Special Issue Advances in Environmental Catalysis for a Sustainable Future)
Show Figures

Graphical abstract

21 pages, 4157 KB  
Article
Particulate Matter Characteristics from a Gasification Cookstove: Implications of Operating Conditions Using Densified Wood Biomass
by Jonatan Gutiérrez, Alexander Santamaría and Juan F. Pérez
Processes 2025, 13(11), 3683; https://doi.org/10.3390/pr13113683 - 14 Nov 2025
Viewed by 594
Abstract
Biomass is commonly used for cooking in developing countries, but traditional cookstoves emit pollutants (CO, NOx, PM), which harm indoor air quality. Improvements and solutions are essential for achieving Sustainable Development Goal 7 (SDG 7). This study assesses the impact of [...] Read more.
Biomass is commonly used for cooking in developing countries, but traditional cookstoves emit pollutants (CO, NOx, PM), which harm indoor air quality. Improvements and solutions are essential for achieving Sustainable Development Goal 7 (SDG 7). This study assesses the impact of the combustion chamber design, the combustion-air/gasification-air ratio (CA/GA = 2.8, 3.0, and 3.2), and the start type of water boiling test (WBT) protocol (cold and hot starts) on the chemical and morphological characteristics of the total suspended particulate matter (TSPM) emitted from a biomass gasification-based cookstove using densified biomass as feedstock. TSPM was characterized using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Raman Spectroscopy, and Transmission Electron Microscopy (TEM) to evaluate their chemical composition and morphological features under the above operational conditions. Under the modified WBT protocol, the cookstove achieved CO levels ranging from 1.52 to 2.13 g/MJd, and efficiency between 26.56% and 27.81%. TSPM emissions ranged between ~74 and 122.70 mg/MJd. The chemical characteristics of TSPM surface functional groups weren’t affected by the start condition, except for decreased intensities as CA/GA increased, promoting oxidation and removal as CO/CO2. While cold start produced TSPM with higher structural order at higher CA/GA levels, no significant differences were observed among samples from both start conditions at CA/GA ≥ 3.0, indicating chemical and structural similarity. Morphology and particle size were mainly unaffected, with only slight increases in particle size during hot start due to higher biomass-to-air ratios. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

12 pages, 3938 KB  
Article
Removal of NOx and PM from Non-Road Mobile Machinery by the Combination of Ozone Oxidation and Venturi Scrubbing
by Ye Sun, Mengxin Li, Tianle Zhu, Xinghua Li, Yue Gao and Jiahao Fu
Processes 2025, 13(11), 3525; https://doi.org/10.3390/pr13113525 - 3 Nov 2025
Viewed by 518
Abstract
Non-road mobile machinery (NRMM) emits a significant amount of NOx and particulate matter (PM), yet there is still a lack of economically feasible purification technologies up to now. In response to this issue, and taking into account the relatively flexible installation conditions [...] Read more.
Non-road mobile machinery (NRMM) emits a significant amount of NOx and particulate matter (PM), yet there is still a lack of economically feasible purification technologies up to now. In response to this issue, and taking into account the relatively flexible installation conditions for exhaust purification systems in NRMM, this study proposes a novel technical approach for the simultaneous removal of NOx and PM based on gas-phase O3 oxidation combined with Venturi scrubbing. The effects of O3 oxidation on the PM physicochemical properties, O3 concentration, liquid-to-gas (L/G) ratio, and surfactant addition in the scrubbing liquid on the PM removal and simultaneous removal of PM and NOx were investigated. The results showed that O3 oxidation significantly promoted PM removal in the absence of NO, which was attributed to the increase in the hydrophilicity of PM resulting from O3 oxidation. However, O3 preferentially reacted with NO, thereby reducing the removal efficiency of PM under the conditions when PM and NO coexisted. Adding surfactants to the scrubbing liquid improved PM removal and increasing the liquid-to-gas ratio improved the removal of both PM and NOx. When both the O3/NO molar ratio and liquid-to-gas ratio were 1.5, the removal efficiencies of NOx and PM reached 87% and 92%, respectively, and O3 escape was also effectively controlled. These findings demonstrated that the combination of gas-phase O3 oxidation and Venturi scrubbing is a promising purification technology for NRMM exhausts. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

21 pages, 2096 KB  
Article
Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl
by Siliang Cui and Matthew Adams
Land 2025, 14(10), 1969; https://doi.org/10.3390/land14101969 - 29 Sep 2025
Viewed by 1549
Abstract
Urban expansion intensifies population exposures to fine particulate matter (PM2.5). Trees mitigate pollution by dry deposition, in which particles settle on plants. However, city-scale models frequently overlook differences in tree species and structure. This study assesses PM2.5 removal by individual [...] Read more.
Urban expansion intensifies population exposures to fine particulate matter (PM2.5). Trees mitigate pollution by dry deposition, in which particles settle on plants. However, city-scale models frequently overlook differences in tree species and structure. This study assesses PM2.5 removal by individual city-owned street trees in Mississauga, Canada, throughout the 2019 leaf-growing season (May to September). Using a modified i-Tree Eco framework, we evaluated the removal of PM2.5 by 200,560 city-owned street trees (245 species) in Mississauga from May to September 2019. The model used species-specific deposition velocities (Vd) from the literature or leaf morphology estimates, adjusted for local winds, a 3 m-resolution satellite-derived Leaf Area Index (LAI), field-validated, crown area modelled from diameter at breast height, and 1 km2 resolution PM2.5 data geolocated to individual trees. About twenty-eight tons of PM2.5 were removed from 200,560 city-owned trees (245 species). Coniferous species (14.37% of trees) removed 25.62 tons (92% of total), much higher than deciduous species (85.63%, 2.18 tons). Picea pungens (18.33 tons, 66%), Pinus nigra (3.29 tons, 12%), and Picea abies (1.50 tons, 5%) are three key species. Conifers’ removal efficiency originates from the faster deposition velocities, larger tree size, and dense foliage, all of which enhance particle deposition. This study emphasizes species-specific approaches for improving urban air quality through targeted tree planting. Prioritizing coniferous species such as spruce and pine can improve pollution mitigation, providing actionable strategies for Mississauga and other cities worldwide to develop green infrastructure planning for air pollution. Full article
Show Figures

Figure 1

33 pages, 4232 KB  
Review
Toward Health-Oriented Indoor Air Quality in Sports Facilities: A Narrative Review of Pollutant Dynamics, Smart Control Strategies, and Energy-Efficient Solutions
by Xueli Cao, Haizhou Fang and Xiaolei Yuan
Buildings 2025, 15(17), 3168; https://doi.org/10.3390/buildings15173168 - 3 Sep 2025
Viewed by 2711
Abstract
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major [...] Read more.
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major pollutant categories, including carbon dioxide (CO2), particulate matter (PM), volatile organic compounds (VOCs), and airborne microbial agents, highlighting their sources, behavior during exercise, and associated health risks. Research shows that physical activity can increase PM concentrations by up to 300%, and CO2 levels frequently exceed 1000 ppm in inadequately ventilated spaces. The presence of semi-volatile organics and bioaerosols further complicates pollutant dynamics, especially in humid and densely occupied areas. Measurement technologies such as optical sensors, chromatographic methods, and molecular techniques are reviewed and compared for their applicability to dynamic indoor settings. Existing IAQ standards across China, the USA, the EU, the UK, and WHO are examined, revealing a lack of activity-specific thresholds and insufficient responsiveness to real-time conditions. Mitigation strategies (e.g., including demand-controlled ventilation, use of low-emission materials, liquid chalk substitutes, and integrated HEPA-UVGI purification systems) are evaluated, many demonstrating pollutant removal efficiencies over 80%. The integration of intelligent building management systems is emphasized for enabling real-time monitoring and adaptive control. This review concludes by identifying research priorities, including the development of activity-sensitive IAQ control frameworks and long-term health impact assessments for athletes and vulnerable users. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 5671 KB  
Article
Street Trees as Sustainable Urban Air Purifiers: A Methodological Approach to Assessing Particulate Matter Phytofiltration
by Karolina Kais, Marzena Suchocka, Olga Balcerzak and Arkadiusz Przybysz
Sustainability 2025, 17(16), 7451; https://doi.org/10.3390/su17167451 - 19 Aug 2025
Viewed by 2123
Abstract
PM2.5 is an air pollutant that has a direct link to increased cardiovascular and respiratory morbidity and mortality, which has been demonstrated in numerous studies. Existing research highlights species-specific variations in the capacity of trees to capture and retain particulate matter (PM). [...] Read more.
PM2.5 is an air pollutant that has a direct link to increased cardiovascular and respiratory morbidity and mortality, which has been demonstrated in numerous studies. Existing research highlights species-specific variations in the capacity of trees to capture and retain particulate matter (PM). However, a critical gap remains regarding sensitivity analyses of i-Tree Eco model assumptions. Such analyses are crucial for validating the model’s PM deposition estimates against empirically derived efficiencies, a deficiency that the present study addresses. The study consisted of two steps: a tree inventory was carried out at three selected sites, based on which, an ecosystem service analysis was performed using i-Tree Eco, and samples were taken from the leaves of trees at the analysed sites, which were the basis for comparing the data from the i-Tree Eco method and laboratory methods. The study focused on comparing PM2.5 and PM10 removal estimates derived from both the model and laboratory measurements. The results revealed significant discrepancies between the modelled and laboratory values. A comparison of the average annual PM10 accumulation measured using laboratory methods for individual tree species showed that Tilia sp. achieved 24%, Fraxinus sp. 47.6%, Aesculus sp. 50.77%, and Quercus robur 23.4% of the PM10 uptake efficiency estimated by the i-Tree Eco model. For PM2.5 uptake, the values obtained through both methods were more consistent. Furthermore, trees growing under more challenging environmental conditions exhibited smaller diameter at breast height (DBH) and lower PM10 and PM2.5 removal efficiency according to both methods. While I-Tree Eco incorporates tree biophysical characteristics and health status, its methodology currently lacks the resolution to reflect site-specific environmental conditions and local pollutant concentrations at the individual tree level. Therefore, laboratory methods are indispensable for calibrating, validating, and supplementing i-Tree Eco estimates, especially when applied to diverse urban environments. Only the combined application of empirical and model-based methods provides a comprehensive understanding of the potential of urban greenery to improve air quality. Full article
(This article belongs to the Special Issue Environmental Pollution and Impacts on Human Health)
Show Figures

Figure 1

18 pages, 3259 KB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 2156
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

14 pages, 7615 KB  
Article
Electrospun Silk Fibroin/Cyclodextrin Nanofibers for Multifunctional Air Filtration
by Papimol Mongyun and Sompit Wanwong
Fibers 2025, 13(7), 94; https://doi.org/10.3390/fib13070094 - 8 Jul 2025
Viewed by 1552
Abstract
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) [...] Read more.
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) nanofibers as multifunctional air filters capable of efficiently reducing PM2.5 and degrading VOCs. The resulting SF/PEO/10CD demonstrated the best multifunctional filtration performance, achieving PM2.5 capture efficiencies of 91.3% with a minimal pressure drop of 4 Pa and VOC removal efficiency of 50%. These characteristics highlight the potential of the SF/PEO/10CD nanofiber with effective, multifunctional properties and environmental benefits for sustainable air filtration application. Full article
Show Figures

Figure 1

58 pages, 949 KB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Cited by 5 | Viewed by 7197
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

11 pages, 1727 KB  
Article
Filtration of Mineral and Biological Aerosols by Natural Plant Panels
by Nathalie Tomson, Ruby Naomi Michael and Igor E. Agranovski
Atmosphere 2025, 16(6), 694; https://doi.org/10.3390/atmos16060694 - 9 Jun 2025
Viewed by 1436
Abstract
This study investigated the potential of Tillandsia plants, which can be arranged as a soil-free living green panel, and Banksia flower spikes, which could be arranged as a non-living natural panel, to filter particulate matter (PM) and airborne microorganisms. The Tillandsia panels demonstrated [...] Read more.
This study investigated the potential of Tillandsia plants, which can be arranged as a soil-free living green panel, and Banksia flower spikes, which could be arranged as a non-living natural panel, to filter particulate matter (PM) and airborne microorganisms. The Tillandsia panels demonstrated superior PM filtration, achieving up to 74% efficiency for large particles (>10 μm) at air velocities of 1.0 and 1.5 m/s without increasing pressure drop substantially. Conversely, Banksia performed better at 0.5 m/s, filtering up to 53% of PM compared to Tillandsia’s 13%. Notably, both panel types demonstrated significant fungal filtration, removing over 50% of airborne spores at 1.5 m/s. These findings suggest that incorporating plant-based panels into urban environments can enhance air quality and public health especially for allergenic particles and microorganisms. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

16 pages, 5244 KB  
Article
Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces
by Peiyong Ni, Zhen Dong, Xiangli Wang, Xuewen Zhang and Xiang Li
Sustainability 2025, 17(11), 5029; https://doi.org/10.3390/su17115029 - 30 May 2025
Viewed by 778
Abstract
The deposition and dispersion of particulate matter from diesel combustion in confined spaces pose significant challenges to air quality and public health, with important implications for sustainable development goals. While previous studies have focused on particle behavior inside diesel engines, the external environmental [...] Read more.
The deposition and dispersion of particulate matter from diesel combustion in confined spaces pose significant challenges to air quality and public health, with important implications for sustainable development goals. While previous studies have focused on particle behavior inside diesel engines, the external environmental effects remain poorly understood. This study systematically investigated the mass concentrations and deposition characteristics of PM1, PM2.5, and PM10 particles in a 1 m3 environmental chamber under both sealed and ventilated conditions. The experimental results demonstrated that natural deposition ratios reached 50–75% after 8 h across all particle sizes. A comparative evaluation of ventilation strategies showed lateral ventilation achieved superior particle reduction ratios of 36%, outperforming direct ventilation at 14–22% and non-ventilated conditions at 23%. The study revealed that ventilation-induced convective removal was more effective than gravitational settling alone, providing important technical insights for air quality management in enclosed environments. These findings offer valuable scientific guidance for optimizing ventilation systems while contributing to the development of sustainable solutions for particulate pollution control. The research advances our understanding of particle behavior in confined spaces and supports technological innovations for cleaner air in urban infrastructure. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

Figure 1

Back to TopTop