Filtration of Mineral and Biological Aerosols by Natural Plant Panels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setup and Experiment Methodology
2.2. Plant Selection
2.3. Particle Selection and Generation/Cultivation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chell, S.; Tomson, N.; Kim, T.D.H.; Michael, R.N. Performance of native succulents, forbs, and grasses on an extensive green roof over four years in subtropical Australia. Urban For. Urban Green. 2022, 74, 127631. [Google Scholar] [CrossRef]
- Kim, T.D.H.; Yu, B.; Srichandra, J.; Low-Choy, S.; Michael, R.N. Water flux and biomass production of native plants at different substrate compactions for landfill phytocaps in Southeast Queensland, Australia. Ecol. Eng. 2022, 183, 106745. [Google Scholar] [CrossRef]
- Nakamura, F. (Ed.) Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance; Springer Nature: Singapore, 2022. [Google Scholar] [CrossRef]
- Al-Shaarani, A.A.Q.A.; Pecoraro, L. A review of pathogenic airborne fungi and bacteria: Unveiling occurrence, sources, and profound human health implication. Front. Microbiol. 2024, 15, 1428415. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, L.; Wu, D.; Xie, J.; Li, J.; Fu, X.; Cong, Z.; Fu, P.; Zhang, Y.; Luo, X.; et al. Global airborne bacterial community—Interactions with Earth’s microbiomes and anthropogenic activities. Proc. Natl. Acad. Sci. USA 2022, 119, e2204465119. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Gu, H.; Lam, S.S.; Sonne, C.; Lu, W.; Li, H.; Chen, X.; Peng, W. Recent progress on phytoremediation of urban air pollution. Chemosphere 2024, 349, 140821. [Google Scholar] [CrossRef]
- Paull, N.J.; Irga, P.J.; Torpy, F.R. Active botanical biofiltration of air pollutants using Australian native plants. Air Qual. Atmos. Health 2019, 12, 1427–1439. [Google Scholar] [CrossRef]
- Paull, N.J.; Krix, D.; Irga, P.J.; Torpy, F.R. Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation 2020, 22, 594–606. [Google Scholar] [CrossRef]
- Peng, Z.; Deng, W.; Hong, Y.; Chen, Y. An experimental work to investigate the capabilities of plants to remove particulate matters in an enclosed greenhouse. Air Qual. Atmos. Health 2020, 13, 477–488. [Google Scholar] [CrossRef]
- Tomson, N.; Michael, R.N.; Agranovski, I.E. Removal of particulate air pollutants by Australian vegetation potentially used for green barriers. Atmos. Pollut. Res. 2021, 12, 101070. [Google Scholar] [CrossRef]
- Tomson, N.; Michael, R.N.; Agranovski, I.E. Classic Theory of Aerosol Filtration for Application to Urban Green Infrastructure. Water Air Soil Pollut. 2025, 236, 188. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, T.; Wang, P.; Lin, Y.; Zheng, R.; Zhao, Y.; Xu, B. Fundamentals of Ornamental Plants in Removing Benzene in Indoor Air. Atmosphere 2019, 10, 221. [Google Scholar] [CrossRef]
- Kim, K.J.; Kil, M.J.; Song, J.S.; Yoo, E.H.; Son, K.-C.; Kays, S.J. Efficiency of Volatile Formaldehyde Removal by Indoor Plants: Contribution of Aerial Plant Parts versus the Root Zone. J. Am. Soc. Hortic. Sci. 2008, 133, 521–526. [Google Scholar] [CrossRef]
- Kim, H.-H.; Yang, J.-Y.; Lee, J.-Y.; Park, J.-W.; Kim, K.-J.; Lim, B.-S.; Lee, G.-W.; Lee, S.-E.; Shin, D.-C.; Lim, Y.-W. House-plant placement for indoor air purification and health benefits on asthmatics. Environ. Health Toxicol. 2014, 29, e2014014. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Zhong, J.; Lin, S.; Pang, S.; Tu, Q.; Agranovski, I.E. Removal of formaldehyde from indoor air by potted Sansevieria trifasciata plants: Dynamic influence of physiological traits on the process. Environ. Sci. Pollut. Res. 2024, 31, 62983–62996. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Torpy, F.R. The in situ pilot-scale phytoremediation of airborne VOCs and particulate matter with an active green wall. Air Qual. Atmos. Health 2019, 12, 33–44. [Google Scholar] [CrossRef]
- El-Tanbouly, R.; Hassan, Z.; El-Messeiry, S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front. Mol. Biosci. 2021, 8, 709395. [Google Scholar] [CrossRef]
- Zhang, J.; Netzel, M.E.; Pengelly, A.; Sivakumar, D.; Sultanbawa, Y. A Review of Phytochemicals and Bioactive Properties in the Proteaceae Family: A Promising Source of Functional Food. Antioxidants 2023, 12, 1952. [Google Scholar] [CrossRef] [PubMed]
- Godman, L. East Melbourne Wall Garden; Lloyd Godman: Studio LAB Xeric. Available online: https://www.lloydgodman.net/suspend/Melbourne1.html (accessed on 31 March 2025).
- Radić, M.; Brković Dodig, M.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef]
- Kandelan, S.N.; Yeganeh, M.; Peyman, S.; Panchabikesan, K.; Eicker, U. Environmental study on greenery planning scenarios to improve the air quality in urban canyons. Sustain. Cities Soc. 2022, 83, 103993. [Google Scholar] [CrossRef]
- Pugh, T.A.; Mackenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Env. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renew. Sustain. Energy Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
- Agranovski, I.E.; Usachev, E.V. In-situ rapid bioaerosol detection in the ambient air by miniature multiplex PCR utilizing technique. Atmos. Environ. 2021, 246, 118147. [Google Scholar] [CrossRef]
- Santamouris, M.; Georgakis, C.; Niachou, A. On the estimation of wind speed in urban canyons for ventilation purposes—Part 2: Using of data driven techniques to calculate the more probable wind speed in urban canyons for low ambient wind speeds. Build. Environ. 2008, 43, 1411–1418. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kim, H.B.; Lee, W.J.; Choi, S.C.; Lee, K.B.; Lee, M.-H. Filter quality factors of fibrous filters with different fiber diameter. Aerosol Sci. Technol. 2021, 55, 154–166. [Google Scholar] [CrossRef]
- ANPSA. Banksia spinulosa. Australian Native Plants Society (Australia). 2025. Available online: https://anpsa.org.au/plant_profiles/banksia-spinulosa/ (accessed on 20 May 2025).
- Griffith Archive. Candlestick Banksia (Banksia spinulosa). Toohey Forest Flora Collection. 2002. Available online: https://griffitharchive.griffith.edu.au/nodes/view/859 (accessed on 20 May 2025).
- Milla Rose. The Banksia: Everything You Need to Know. 2022. Available online: https://millarose.com.au/blogs/flowers/banksia-the-ultimate-guide (accessed on 20 May 2025).
- ANBG. Information About Australia’s Flora: Growing Native Plants: Banksia spinulosa; Australian National Botanic Gardens and Centre for Australian National Biodiversity Research: Canberra, Australia, 2015. Available online: https://www.anbg.gov.au/gnp/gnp7/banksia-spinulosa.html (accessed on 18 May 2025).
- Cornell Cooperative Extension. Air Plants (Tillandsia). Warren County Master Gardener Articles. 2021. Available online: http://warren.cce.cornell.edu/gardening-landscape/warren-county-master-gardener-articles/air-plants-tillandsia (accessed on 20 May 2025).
- Godman, L. Plants & Architecture: Critical Comparisons of Xeric and Hydric Plant Systems, 1st ed.; Photo-Synthesis Media; 2023; Available online: https://www.lloydgodman.net/Publications/Plants_and_architecture.html (accessed on 20 May 2025).
- Beck, A.; Duax, S. How to Grow Air Plants That Don’t Need Soil to Survive; Better Homes & Gardens: Des Moines, IA, USA, 2025; Available online: https://www.bhg.com/gardening/houseplants/care/grow-air-plants (accessed on 20 May 2025).
- Godman, L.; Jones, S.; Harris, G. A “Flight” Manual for Air Plants. CTBUH J. 2015. Available online: https://www.lloydgodman.net/Cv/Press/TBUH1.pdf (accessed on 20 May 2025).
- Sengo, Z. Air Plants: The Curious World of Tillandsias; Timber Press, Inc.: Portland, OR, USA, 2014. [Google Scholar]
- ASA. Bruce Dunstan. Aroid Society of Australia. Available online: https://www.aroids.net/bruce-dunstan (accessed on 30 March 2025).
- ARB. Inhalable Particulate Matter and Health (PM2.5 and PM10)|California Air Resources Board. 2025. Available online: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health?keywords=2025 (accessed on 20 May 2025).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, 1st ed.; World Health Organization: Geneva, Switzerland, 2021.
- Taussig, L.M.; Landau, L.; Le Souef, P.; Martinez, F.D.; Morgan, W.J.; Sly, P. Pediatric Respiratory Medicine, 2nd ed.; Mosby International: London, UK, 2008. [Google Scholar]
- Health Canada. Aspergillus Niger Group—Information Sheet. In Pollinosis; Falagiani, P., Ed.; CRC Press: Boca Raton, FL, USA, 1989. Available online: https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/chemicals-glance/aspergillus-awamori-aspergillus-brasiliensis.html (accessed on 13 June 2014).
- Scheermeyer, E.; Agranovski, I.E. Design and evaluation of a new device for fungal spore aerosolization for laboratory applications. J. Aerosol Sci. 2009, 40, 879–889. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Wang, J.; Wang, S. Prediction of Aerosolized Fungal Spores by Determining Respiratory Intensity of the Growing Colony. Aerosol Air Qual. Res. 2020, 20, 776–786. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air quality improvement in street canyons. Env. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Falagiani, P. Pollinosis; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Knox, R.B. Pollen and Allergy; Edward Arnold: London, UK, 1979. [Google Scholar]
- Li, H.; Wu, Z.-F.; Yang, X.-R.; An, X.-L.; Ren, Y.; Su, J.-Q. Urban greenness and plant species are key factors in shaping air microbiomes and reducing airborne pathogens. Environ. Int. 2021, 153, 106539. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomson, N.; Michael, R.N.; Agranovski, I.E. Filtration of Mineral and Biological Aerosols by Natural Plant Panels. Atmosphere 2025, 16, 694. https://doi.org/10.3390/atmos16060694
Tomson N, Michael RN, Agranovski IE. Filtration of Mineral and Biological Aerosols by Natural Plant Panels. Atmosphere. 2025; 16(6):694. https://doi.org/10.3390/atmos16060694
Chicago/Turabian StyleTomson, Nathalie, Ruby Naomi Michael, and Igor E. Agranovski. 2025. "Filtration of Mineral and Biological Aerosols by Natural Plant Panels" Atmosphere 16, no. 6: 694. https://doi.org/10.3390/atmos16060694
APA StyleTomson, N., Michael, R. N., & Agranovski, I. E. (2025). Filtration of Mineral and Biological Aerosols by Natural Plant Panels. Atmosphere, 16(6), 694. https://doi.org/10.3390/atmos16060694