Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,051)

Search Parameters:
Keywords = particulate matter (PM) emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 236
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 109
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 261
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 255
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 180
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

21 pages, 3271 KiB  
Article
Evaluation of the Coupling Coordination Degree Between PM2.5 and Urbanization Level: A Case in Guangdong Province
by Jiwei Shen, Ziwen Zhu, Dakang Wang, Yingpin Yang, Yongru Mo, Hui Xia, Xiankun Yang, Yibo Wang, Zhen Li and Jinnian Wang
Sustainability 2025, 17(15), 6751; https://doi.org/10.3390/su17156751 - 24 Jul 2025
Viewed by 208
Abstract
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. [...] Read more.
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. Based on the spatiotemporal relationship between the evolution of urbanization levels and PM2.5 concentrations, and starting from multiple factors characterizing urbanization, this study constructs a coupling coordination degree model between PM2.5 and urbanization levels to explore the interaction and degree of coordination between urbanization and PM2.5 in Guangdong Province from 2000 to 2021. The research reveals that the conflict between the urbanization process and PM2.5 pollution in various cities of Guangdong Province is gradually easing. The year 2011 was a turning point as the PM2.5 pollution levels in cities that were in an uncoordinated phase began to improve. The coupling coordination degree between urbanization and PM2.5 pollution in Guangdong Province exhibits significant spatial heterogeneity. The coupling coordination degree in most coastal cities is higher than that in inland cities. Cities in economically underdeveloped regions also face relatively lower pressure from pollution emissions. These regions are characterized by lagging urbanization, and their coupling coordination degree is slowly increasing as urbanization progresses. In economically developed regions, the coupling coordination degree between urbanization levels and PM2.5 pollution has reached a basic level of coordination, although the specific types vary. Full article
Show Figures

Figure 1

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 430
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

15 pages, 924 KiB  
Article
Excessive Smoke from a Neighborhood Restaurant Highlights Gaps in Air Pollution Enforcement: Citizen Science Observational Study
by Nicholas C. Newman, Deborah Conradi, Alexander C. Mayer, Cole Simons, Ravi Newman and Erin N. Haynes
Air 2025, 3(3), 20; https://doi.org/10.3390/air3030020 - 18 Jul 2025
Viewed by 400
Abstract
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill [...] Read more.
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill this gap. We describe the development and implementation of an air pollution monitoring and community engagement plan in response to resident concerns regarding excessive smoke production from a neighborhood restaurant. Particulate matter (PM2.5) was measured using a low-cost, portable sensor. When cooking was taking place, the highest PM2.5 readings were within 50 m of the source (mean PM2.5 36.9 µg/m3) versus greater than 50 m away (mean PM2.5 13.0 µg/m3). Sharing results with local government officials did not result in any action to address the source of the smoke emissions, due to lack of jurisdiction. A review of air pollution regulations across the United States indicated that only seven states regulate food cookers and six states specifically exempted cookers from air pollution regulations. Concerns about the smoke were communicated with the restaurant owner who eventually changed the cooking fuel. Following this change, less smoke was observed from the restaurant and PM2.5 measurements were reduced to background levels. Although current environmental health regulations may not protect residents living near sources of food cooker-based sources of PM2.5, community engagement shows promise in addressing these emissions. Full article
Show Figures

Figure 1

17 pages, 1837 KiB  
Article
The Impact of Meteorological Variables on Particulate Matter Concentrations
by Amaury de Souza, José Francisco de Oliveira-Júnior, Kelvy Rosalvo Alencar Cardoso, Widinei A. Fernandes and Hamilton Germano Pavao
Atmosphere 2025, 16(7), 875; https://doi.org/10.3390/atmos16070875 - 17 Jul 2025
Viewed by 297
Abstract
This study assessed the influence of meteorological conditions on particulate matter (PM) concentrations in Campo Grande, Brazil, from May to December 2021. Using statistical analyses, including Pearson’s correlation coefficient and multivariate regression, we analyzed secondary data on PM2.5 and PM10 concentrations and meteorological [...] Read more.
This study assessed the influence of meteorological conditions on particulate matter (PM) concentrations in Campo Grande, Brazil, from May to December 2021. Using statistical analyses, including Pearson’s correlation coefficient and multivariate regression, we analyzed secondary data on PM2.5 and PM10 concentrations and meteorological variables from the Federal University of Mato Grosso do Sul’s Physics Department. Daily PM concentrations complied with Brazil’s National Ambient Air Quality Standards (PQAr). The PM2.5/PM10 ratios averaged 0.436 (hourly) and 0.442 (daily), indicating a mix of fine and coarse particles. Significant positive correlations were found with temperature, while relative humidity showed a negative correlation, reducing PM levels through deposition. Wind speed had no significant impact. Meteorological influences suggest that air quality management should be tailored to regional conditions, particularly addressing local emission sources like vehicular traffic and biomass burning. Full article
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 323
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 1389 KiB  
Article
Cancer Risk Associated with Inhalation Exposure to PM10-Bound PAHs and PM10-Bound Heavy Metals in Polish Agglomerations
by Barbara Kozielska and Dorota Kaleta
Appl. Sci. 2025, 15(14), 7903; https://doi.org/10.3390/app15147903 - 15 Jul 2025
Viewed by 455
Abstract
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis [...] Read more.
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis and looked at the increased cancer risk from PM10-bound harmful substances for adult men and women living in Polish cities. The analysis was based on data from 8 monitoring stations where concentrations of PM10, PAHs, and HMs were measured simultaneously between 2018 and 2022. The cluster analysis made it possible to distinguish three separate agglomeration clusters: cluster I (Upper Silesia, Wroclaw) with the highest concentrations of heavy metals and PAHs, with mean levels of lead 14.97 ± 7.27 ng·m−3, arsenic 1.73 ± 0.60 ng·m−3, nickel 1.77 ± 0.95 ng·m−3, cadmium 0.49 ± 0.28 ng·m−3, and ∑PAHs 15.53 ± 6.44 ng·m−3, cluster II (Warsaw, Łódź, Lublin, Cracow) with dominant road traffic emissions and low emissions, with average levels of lead 8.00 ± 3.14 ng·m−3, arsenic 0.70 ± 0.17 ng·m−3, nickel 1.64 ± 0.96 ng·m−3, and cadmium 0.49 ± 0.28 ng·m−3, and cluster III (Szczecin, Tricity) with the lowest concentration levels with favourable ventilation conditions. All calculated ILCR values were in the range of 1.20 × 10−6 to 1.11 × 10−5, indicating a potential cancer risk associated with long-term exposure. The highest ILCR values were reached in Upper Silesia and Wroclaw (cluster I), and the lowest in Tricity, which was classified in cluster III. Our findings suggest that there are continued preventive actions and stricter air quality control. The results confirm that PM10 is a significant carrier of airborne carcinogens and should remain a priority in both environmental and public health policy. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Optimization of Vertical Ultrasonic Attenuator Parameters for Reducing Exhaust Gas Smoke of Compression–Ignition Engines: Efficient Selection of Emitter Power, Number, and Spacing
by Adil Kadyrov, Łukasz Warguła, Aliya Kukesheva, Yermek Dyssenbaev, Piotr Kaczmarzyk, Wojciech Klapsa and Bartosz Wieczorek
Appl. Sci. 2025, 15(14), 7870; https://doi.org/10.3390/app15147870 - 14 Jul 2025
Viewed by 284
Abstract
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article [...] Read more.
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article presents experimental results of the effects of ultrasonic emitter parameters, including the number, arrangement, and power, along with the engine speed, on the exhaust smoke density. Tests were conducted on a laboratory prototype equipped with six ultrasonic emitters spaced 0.17 m apart. The exhaust source was a diesel engine from a construction excavator, based on the MTZ-80 tractor design, delivering 80 HP and a displacement of 4750 cm3. A regression model was developed to describe the relationship between the engine speed, emitter power and spacing, and smoke density. The optimal configuration was found to involve an emitter power of 319.35 W and a spacing of 1.361 m for a given engine speed. Under the most effective conditions—an engine speed of 1500 rpm, six active emitters, and a total power of 600 W—smoke emissions were reduced by 18%. These findings support the feasibility of using ultrasonic methods as complementary or alternative exhaust gas filtration techniques for non-road diesel engines. Full article
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

25 pages, 1840 KiB  
Article
Airborne Measurements of Real-World Black Carbon Emissions from Ships
by Ward Van Roy, Jean-Baptiste Merveille, Kobe Scheldeman, Annelore Van Nieuwenhove and Ronny Schallier
Atmosphere 2025, 16(7), 840; https://doi.org/10.3390/atmos16070840 - 10 Jul 2025
Viewed by 392
Abstract
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter [...] Read more.
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter (PM2.5), particularly in sectors such as energy production, industry, and road transport. In contrast, the maritime shipping industry has made limited progress in reducing BC emissions from ships, mainly due to the absence of stringent BC emission regulations. While the International Maritime Organization (IMO) has established emission limits for pollutants such as SOx, NOx, and VOCs under MARPOL Annex VI, as of today, BC emissions from ships are still unregulated at the international level. Whereas it was anticipated that PM2.5 and BC emissions would be reduced with the adoption of the SOx regulations, especially within the sulfur emission control areas (SECA), this study reveals that BC emissions are only partially affected by the current MARPOL Annex VI regulations. Based on 886 real-world black carbon (BC) emission measurements from ships operating in the southern North Sea, the study demonstrates that SECA-compliant fuels do contribute to a notable decrease in BC emissions. However, it is important to note that the average BC emission factors (EFs) within the SECA remain comparable in magnitude to those reported for non-compliant fuels in earlier studies. Moreover, ships using exhaust gas cleaning systems (EGCSs) as a SECA-compliant measure were found to emit significantly higher levels of BC, raising concerns about the environmental sustainability of EGCSs as an emissions mitigation strategy. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
Show Figures

Figure 1

Back to TopTop