Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = particle linear depolarization ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 53
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

29 pages, 10785 KiB  
Article
Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022
by Christina-Anna Papanikolaou, Alexandros Papayannis, Marilena Gidarakou, Sabur F. Abdullaev, Nicolae Ajtai, Holger Baars, Dimitris Balis, Daniele Bortoli, Juan Antonio Bravo-Aranda, Martine Collaud-Coen, Benedetto de Rosa, Davide Dionisi, Kostas Eleftheratos, Ronny Engelmann, Athena A. Floutsi, Jesús Abril-Gago, Philippe Goloub, Giovanni Giuliano, Pilar Gumà-Claramunt, Julian Hofer, Qiaoyun Hu, Mika Komppula, Eleni Marinou, Giovanni Martucci, Ina Mattis, Konstantinos Michailidis, Constantino Muñoz-Porcar, Maria Mylonaki, Michail Mytilinaios, Doina Nicolae, Alejandro Rodríguez-Gómez, Vanda Salgueiro, Xiaoxia Shang, Iwona S. Stachlewska, Horațiu Ioan Ștefănie, Dominika M. Szczepanik, Thomas Trickl, Hannes Vogelmann and Kalliopi Artemis Voudouriadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(17), 3350; https://doi.org/10.3390/rs16173350 - 9 Sep 2024
Cited by 2 | Viewed by 2401
Abstract
Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one [...] Read more.
Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one in March and one in April, characterized by different dust transport paths. The dust aerosol layers were studied over 18 EARLINET stations, examining aerosol characteristics during March and April in four different regions (M-I, M-II, M-III, and M-IV and A-I, A-II, A-III, and A-IV, respectively), focusing on parameters such as aerosol layer thickness, center of mass (CoM), lidar ratio (LR), particle linear depolarization ratio (PLDR), and Ångström exponents (ÅE). In March, regions exhibited varying dust geometrical and optical properties, with mean CoM values ranging from approximately 3.5 to 4.8 km, and mean LR values typically between 36 and 54 sr. PLDR values indicated the presence of both pure and mixed dust aerosols, with values ranging from 0.20 to 0.32 at 355 nm and 0.24 to 0.31 at 532 nm. ÅE values suggested a range of particle sizes, with some regions showing a predominance of coarse particles. Aerosol Optical Depth (AOD) simulations from the NAAPS model indicated significant dust activity across Europe, with AOD values reaching up to 1.60. In April, dust aerosol layers were observed between 3.2 to 5.2 km. Mean LR values typically ranged from 35 to 51 sr at both 355 nm and 532 nm, while PLDR values confirmed the presence of dust aerosols, with mean values between 0.22 and 0.31 at 355 nm and 0.25 to 0.31 at 532 nm. The ÅE values suggested a mixture of particle sizes. The AOD values in April were generally lower, not exceeding 0.8, indicating a less intense dust presence compared to March. The findings highlight spatial and temporal variations in aerosol characteristics across the regions, during the distinctive periods. From 15 to 16 March 2022, Saharan dust significantly reduced UV-B radiation by approximately 14% over the ATZ station (Athens, GR). Backward air mass trajectories showed that the dust originated from the Western and Central Sahara when, during this specific case, the air mass trajectories passed over GRA (Granada, ES) and PAY (Payerne, CH) before reaching ATZ, maintaining high relative humidity and almost stable aerosol properties throughout its transport. Lidar data revealed elevated aerosol backscatter (baer) and PLDR values, combined with low LR and ÅE values, indicative of pure dust aerosols. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 4491 KiB  
Article
Optical and Microphysical Properties of the Aerosols during a Rare Event of Biomass-Burning Mixed with Polluted Dust
by Marilena Gidarakou, Alexandros Papayannis, Panagiotis Kokkalis, Nikolaos Evangeliou, Stergios Vratolis, Emmanouella Remoundaki, Christine Groot Zwaaftink, Sabine Eckhardt, Igor Veselovskii, Maria Mylonaki, Athina Argyrouli, Konstantinos Eleftheriadis, Stavros Solomos and Maria I. Gini
Atmosphere 2024, 15(2), 190; https://doi.org/10.3390/atmos15020190 - 1 Feb 2024
Cited by 1 | Viewed by 2019
Abstract
A rare event of mixed biomass-burning and polluted dust aerosols was observed over Athens, Greece (37.9° N, 23.6° E), during 21–26 May 2014. This event was studied using a synergy of a 6-wavelength elastic-Raman-depolarization lidar measurements, a CIMEL sun photometer, and in situ [...] Read more.
A rare event of mixed biomass-burning and polluted dust aerosols was observed over Athens, Greece (37.9° N, 23.6° E), during 21–26 May 2014. This event was studied using a synergy of a 6-wavelength elastic-Raman-depolarization lidar measurements, a CIMEL sun photometer, and in situ instrumentation. The FLEXPART dispersion model was used to identify the aerosol sources and quantify the contribution of dust and black carbon particles to the mass concentration. The identified air masses were found to originate from Kazakhstan and Saharan deserts, under a rare atmospheric pressure system. The lidar ratio (LR) values retrieved from the Raman lidar ranged within 25–89 sr (355 nm) and 35–70 sr (532 nm). The particle linear depolarization ratio (δaer) ranged from 7 to 28% (532 nm), indicating mixing of dust with biomass-burning particles. The aerosol optical depth (AOD) values derived from the lidar ranged from 0.09–0.43 (355 nm) to 0.07–0.25 (532 nm). An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single scattering albedo (SSA), and mean complex refractive index (m)) inside selected atmospheric layers. We found that reff was 0.12–0.51 (±0.04) µm, SSA was 0.94–0.98 (±0.19) (at 532 nm), while m ranged between 1.39 (±0.05) + 0.002 (±0.001)i and 1.63 (±0.05) + 0.008 (±0.004)i. The polarization lidar photometer networking (POLIPHON) algorithm was used to estimate the vertical profile of the mass concentration for the dust and non-dust components. A mean mass concentration of 15 ± 5 μg m−3 and 80 ± 29 μg m−3 for smoke and dust was estimated for selected days, respectively. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data with good agreement. Full article
(This article belongs to the Special Issue Optical Characteristics of Aerosol Pollution)
Show Figures

Figure 1

21 pages, 11514 KiB  
Article
Investigating a Persistent Stratospheric Aerosol Layer Observed over Southern Europe during 2019
by Kalliopi Artemis Voudouri, Konstantinos Michailidis, Maria-Elissavet Koukouli, Samuel Rémy, Antje Inness, Ghassan Taha, Georgia Peletidou, Nikolaos Siomos, Dimitrios Balis and Mark Parrington
Remote Sens. 2023, 15(22), 5394; https://doi.org/10.3390/rs15225394 - 17 Nov 2023
Cited by 4 | Viewed by 2052
Abstract
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of [...] Read more.
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of the year. In this study, we analyze the geometrical and optical properties of this stratospheric layer, using ground-based Lidar measurements, CALIOP/CALIPSO & OMPS-LP space-borne observations, as well as CAMS/ECMWF assimilation experiments. The main aim of the paper is to present an overview of this atmospheric feature and to identify any temporal changes in the aerosol properties that would signify substantial changes in the composition of this long-lasting stratospheric plume over Thessaloniki. This aim is further enhanced by emphasizing the importance of the combined information based on active ground- and space-borne lidars, passive remote sensing, and models during the complex stratospheric aerosol conditions as those encountered during 2019. The layer’s origin is linked to the Raikoke volcanic eruption in the Kuril Islands in June 2019, yielding a particle linear depolarization ratio less than 0.05, while some indications exist that the intense forest fires at mid and high northern latitudes throughout the summer of 2019 also contributed to the persistent layer. We report that in July, mainly volcanic sulphate aerosol layers with a 1–3 km vertical extent were identified in the stratosphere at ~15 km over Thessaloniki, while after August and until the end of 2019, the plume heights showed a significant month-to-month variability and a broadening (with thickness greater than 3 km) towards lower altitudes. The aerosol optical thickness was found to be in the range between 0.004 and 0.125 (visible) and 0.001 and 0.095 (infrared) and the particle depolarization of the detected stratospheric plume was found to be 0.03 ± 0.04, indicative of spherical particles, such as sulphate aerosols. Full article
Show Figures

Figure 1

41 pages, 8589 KiB  
Article
Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR
by Trishna Bhattacharyya, Abhijit Chatterjee, Sanat K. Das, Soumendra Singh and Sanjay K. Ghosh
Atmosphere 2023, 14(7), 1102; https://doi.org/10.3390/atmos14071102 - 30 Jun 2023
Cited by 2 | Viewed by 2461
Abstract
Profiles of aerosols and cloud layers have been investigated over a high-altitude urban atmosphere in the eastern Himalayas in India, for the first time, using a Raman LIDAR. The study was conducted post-monsoon season over Darjeeling (latitude 27°01 N longitude 88°36 [...] Read more.
Profiles of aerosols and cloud layers have been investigated over a high-altitude urban atmosphere in the eastern Himalayas in India, for the first time, using a Raman LIDAR. The study was conducted post-monsoon season over Darjeeling (latitude 27°01 N longitude 88°36 E, 2200 masl), a tourist destination in north-eastern India. In addition to the aerosols and cloud characterization and atmospheric boundary layer detection, the profile of the water vapor mixing ratio has also been analyzed. Effects of atmospheric dynamics have been studied using the vertical profiles of the normalized standard deviation of RCS along with the water vapor mixing ratio. The aerosol optical characteristics below and above the Atmospheric Boundary Layer (ABL) region were studied separately, along with the interrelation of their optical and microphysical properties with synoptic meteorological parameters. The backscatter coefficient and the extinction coefficient were found in the range from 7.15×1010 m1 sr1 to 3.01×105 m1 sr1 and from 1.02×105 m1 to 2.28×103 m1, respectively. The LIDAR ratio varies between 3.9 to 78.39 sr over all altitudes. The variation of the linear depolarization ratio from 0.19 to 0.32 indicates the dominance, of non-spherical particles. The periodicity observed in different parameters may be indicative of atmospheric wave phenomena. Cloud parameters, such as scattering coefficients, top and bottom height, and optical depth for different cloud phases, have been evaluated. A co-located Micro Rain Radar has been used with LIDAR for cloud life cycle study. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

21 pages, 2539 KiB  
Article
Near-Field Single-Scattering Calculations of Aerosols: Sensitivity Studies
by Nkongho Ayuketang Arreyndip, Konrad Kandler and Aryasree Sudharaj
Optics 2023, 4(2), 375-395; https://doi.org/10.3390/opt4020028 - 14 Jun 2023
Cited by 2 | Viewed by 1868
Abstract
We model the effects of the photosensitive parameters of aerosols on their optical properties to provide a solid framework for further experimental and theoretical studies. A spherical dust particle is used to study the effects of the ambient medium, size, surface roughness, wavelength, [...] Read more.
We model the effects of the photosensitive parameters of aerosols on their optical properties to provide a solid framework for further experimental and theoretical studies. A spherical dust particle is used to study the effects of the ambient medium, size, surface roughness, wavelength, and imaginary part of the complex refractive index. Five Gaussian random spheres with different aspect ratios are simulated to study the dependence of aerosol light scattering properties on particle shape distribution. To investigate the influence of composition, we model two typical kaolinite-like particles (pure and composite) collected from Southwest Sahara, with 0 and 2% hematite at different mixing states. Using the method of discrete-dipole approximation in DDSCAT, a comparative study is performed with the Mueller matrix elements, scattering, absorption, extinction efficiencies, single scattering albedo, and linear depolarization ratio as indicators. For single, microscopic dust particles, near-field calculations are carried out. The results show that the intensity of backscattering and the scattering efficiency decreases in water compared to dry air. Light in the visible range is more efficient for aerosol scattering experiments. A small number of impurities in the sample will increase its absorbing properties, but, in general, the scattering efficiencies strongly depend on the single-particle mixing state. Smaller particles with a diameter comparable to the wavelength of incident light show higher scattering efficiencies but lower backscattering intensities than larger particles, while surface roughness is shown to strongly alter the polarizability of the particle but has a negligible effect on its single-scattering albedo. Moreover, different shapes have a strong effect on the degree of linear polarization, but, in general, using the spherical over elliptic shape model can underestimate the scattering efficiencies by up to 4%. Finally, variation in the imaginary part of the complex RI can underestimate the single scattering albedo by up to 35.8%. Full article
Show Figures

Figure 1

21 pages, 6854 KiB  
Article
Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event
by Patrick Chazette and Julien Totems
Remote Sens. 2023, 15(4), 1070; https://doi.org/10.3390/rs15041070 - 15 Feb 2023
Cited by 5 | Viewed by 2471
Abstract
The vertical aerosol layering of the troposphere is poorly documented in mountainous regions, particularly in the Alpine valleys, which are influenced by valley and mountain winds. To improve our knowledge of particulate matter trapped in the Annecy valley, synergetic measurements performed by a [...] Read more.
The vertical aerosol layering of the troposphere is poorly documented in mountainous regions, particularly in the Alpine valleys, which are influenced by valley and mountain winds. To improve our knowledge of particulate matter trapped in the Annecy valley, synergetic measurements performed by a ground-based meteorological Raman lidar and a Rayleigh-Mie lidar aboard an ultralight aircraft were implemented as part of the Lacustrine-Water vApor Isotope inVentory Experiment (L-WAIVE) over Lake Annecy. These observations were complemented by satellite observations and Lagrangian modeling. The vertical profiles of aerosol optical properties (e.g., aerosol extinction coefficient (AEC), lidar ratio (LR), particle linear depolarization ratio (PDR)) are derived from lidar measurements at 355 nm during the period between 13 and 22 June 2019. The background aerosol content with an aerosol optical thickness (AOT) of 0.10 ± 0.05, corresponding to local–regional conditions influenced by anthropogenic pollution, has been characterized over the entirety of Lake Annecy thanks to the mobile ultralight payload. The aerosol optical properties are shown to be particularly variable over time in the atmospheric column, with mean LRs (PDRs) varying between 40 ± 8 and 115 ± 15 sr (2 ± 1 and 35 ± 2%). Those conditions can be disturbed by air masses that have recirculated over the valley, as well as by contributions from neighboring valleys. We have observed an important disruption in the atmospheric aerosol profiles by the arrival of an exceptionally dry air mass (RH ~ 30%), containing aerosols identified as coming from the Great Western Erg (AOT ~ 0.5, LR = 65 ± 10 sr, PDR = 20–35%) in the Sahara. These desert dust particles are shown to influence the entire atmospheric column in the Annecy valley. Such an experimental approach, coupling upward and downward lidar and spaceborne observation/Lagrangian modelling, was shown to be of significant interest for the long-term monitoring of the evolution of aerosol loads over deep valleys. It allows a better understanding of the influence of dust storms in the presence of severe convective weather processes. Full article
(This article belongs to the Special Issue Lidar for Advanced Classification and Retrieval of Aerosols)
Show Figures

Graphical abstract

15 pages, 3952 KiB  
Article
Linearized Single-Scattering Property Database for Hexagonal Prism Ice Particles
by Chenxu Gao, Dongbin Liang, Bingqiang Sun, Jian Liu and Zhaoyuan Liu
Remote Sens. 2022, 14(23), 6138; https://doi.org/10.3390/rs14236138 - 3 Dec 2022
Cited by 1 | Viewed by 1857
Abstract
Accurate description of the single scattering properties of atmospheric particles can be an essential factor influencing the remote sensing of atmospheric microphysics. In this paper, a database for the linearized single scattering properties of ice particles was developed in the visible to infrared [...] Read more.
Accurate description of the single scattering properties of atmospheric particles can be an essential factor influencing the remote sensing of atmospheric microphysics. In this paper, a database for the linearized single scattering properties of ice particles was developed in the visible to infrared spectral region of 0.4–15 μm and for size parameters ranging from 0.5 to 500. The linearized invariant imbedding T-matrix method and linearized physical-geometric optics method were jointly applied. A full set of integral scattering properties including extinction efficiency, single scattering albedo, asymmetry factors, and differential scattering properties, including six phase matrix elements, were the basic scattering parameters in the database. Furthermore, the Jacobians of these regular scattering properties with respect to refractive index (real and imaginary parts) and effective radius were also included and used for sensitivity determinations. The spectral and size-dependent variations and changing rates of the derivative characteristics with actual application values, such as backscattering depolarization ratios, were also discussed. Full article
Show Figures

Figure 1

21 pages, 5700 KiB  
Article
Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley
by Longlong Wang, Marija Bervida Mačak, Samo Stanič, Klemen Bergant, Asta Gregorič, Luka Drinovec, Griša Močnik, Zhenping Yin, Yang Yi, Detlef Müller and Xuan Wang
Remote Sens. 2022, 14(14), 3482; https://doi.org/10.3390/rs14143482 - 20 Jul 2022
Cited by 10 | Viewed by 2736
Abstract
Aerosol direct radiative forcing is strongly dependent on aerosol distributions and aerosol types. A detailed understanding of such information is still missing at the Alpine region, which currently undergoes amplified climate warming. Our goal was to study the vertical variability of aerosol types [...] Read more.
Aerosol direct radiative forcing is strongly dependent on aerosol distributions and aerosol types. A detailed understanding of such information is still missing at the Alpine region, which currently undergoes amplified climate warming. Our goal was to study the vertical variability of aerosol types within and above the Vipava valley (45.87°N, 13.90°E, 125 m a.s.l.) to reveal the vertical impact of each particular aerosol type on this region, a representative complex terrain in the Alpine region which often suffers from air pollution in the wintertime. This investigation was performed using the entire dataset of a dual-wavelength polarization Raman lidar system, which covers 33 nights from September to December 2017. The lidar provides measurements from midnight to early morning (typically from 00:00 to 06:00 CET) to provide aerosol-type dependent properties, which include particle linear depolarization ratio, lidar ratio at 355 nm and the aerosol backscatter Ångström exponent between 355 nm and 1064 nm. These aerosol properties were compared with similar studies, and the aerosol types were identified by the measured aerosol optical properties. Primary anthropogenic aerosols within the valley are mainly emitted from two sources: individual domestic heating systems, which mostly use biomass fuel, and traffic emissions. Natural aerosols, such as mineral dust and sea salt, are mostly transported over large distances. A mixture of two or more aerosol types was generally found. The aerosol characterization and statistical properties of vertical aerosol distributions were performed up to 3 km. Full article
Show Figures

Figure 1

21 pages, 4651 KiB  
Article
Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing
by Christina-Anna Papanikolaou, Panagiotis Kokkalis, Ourania Soupiona, Stavros Solomos, Alexandros Papayannis, Maria Mylonaki, Dimitra Anagnou, Romanos Foskinis and Marilena Gidarakou
Atmosphere 2022, 13(6), 867; https://doi.org/10.3390/atmos13060867 - 25 May 2022
Cited by 5 | Viewed by 3446
Abstract
In the present study, we present the aerosol optical properties and radiative forcing (RF) of the tropospheric and stratospheric smoke layers, observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, during the extraordinary Australian biomass burning (BB) event in 2019–2020. [...] Read more.
In the present study, we present the aerosol optical properties and radiative forcing (RF) of the tropospheric and stratospheric smoke layers, observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, during the extraordinary Australian biomass burning (BB) event in 2019–2020. These BB layers were studied and analyzed within the longitude range 140° E–20° W and the latitude band 20°–60° S, as they were gradually transported from the Australian banks to the South American continent. These layers were found to be trapped within the Andes circulation, staying for longer time periods in the same longitude region. The BB aerosols reached altitudes even up to 22 km amsl., and regarding their optical properties, they were found to be nearly spherical (particle linear depolarization ratio (PLDR) < 0.10) in the troposphere; while, in the stratosphere, they were more depolarizing with PLDR values reaching up to 0.20. Fine and ultrafine smoke particles were dominant in the stratosphere, according to the observed Ångström exponent, related to the backscatter coefficients obtained by the pair of wavelengths 532 and 1064 nm (Åb up to 3), in contrast to the Åb values in the troposphere (Åb < 1) indicative of the presence of coarser particles. As the aerosols fend off the source, towards North America, a slightly descending trend was observed in the tropospheric Åb values, while the stratospheric ones were lightly increased. A maximum aerosol optical depth (AOD) value of 0.54 was recorded in the lower troposphere over the fire spots, while, in the stratosphere, AOD values up to 0.29 were observed. Sharp changes of carbon monoxide (CO) and ozone (O3) concentrations were also recorded by the Copernicus Atmosphere Monitoring Service (CAMS) in various atmospheric heights over the study region, associated with fire smoke emissions. The tropospheric smoke layers were found to have a negative mean radiative effect, ranging from −12.83 W/m2 at the top of the atmosphere (TOA), to −32.22 W/m2 on the surface (SRF), while the radiative effect of the stratospheric smoke was estimated between −7.36 at the TOA to −18.51 W/m2 at the SRF. Full article
(This article belongs to the Special Issue Feature Papers in Aerosol Research)
Show Figures

Figure 1

23 pages, 6477 KiB  
Article
Vertical Profiling of Fresh Biomass Burning Aerosol Optical Properties over the Greek Urban City of Ioannina, during the PANACEA Winter Campaign
by Christina-Anna Papanikolaou, Alexandros Papayannis, Maria Mylonaki, Romanos Foskinis, Panagiotis Kokkalis, Eleni Liakakou, Iasonas Stavroulas, Ourania Soupiona, Nikolaos Hatzianastassiou, Maria Gavrouzou, Eleni Kralli and Dimitra Anagnou
Atmosphere 2022, 13(1), 94; https://doi.org/10.3390/atmos13010094 - 7 Jan 2022
Cited by 17 | Viewed by 3657
Abstract
Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina [...] Read more.
Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period. Full article
(This article belongs to the Special Issue Feature Papers in Atmosphere Science)
Show Figures

Figure 1

19 pages, 10270 KiB  
Article
Aerosol Characterization during the Summer 2017 Huge Fire Event on Mount Vesuvius (Italy) by Remote Sensing and In Situ Observations
by Antonella Boselli, Alessia Sannino, Mariagrazia D’Emilio, Xuan Wang and Salvatore Amoruso
Remote Sens. 2021, 13(10), 2001; https://doi.org/10.3390/rs13102001 - 20 May 2021
Cited by 11 | Viewed by 2900
Abstract
During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius [...] Read more.
During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere. Full article
Show Figures

Graphical abstract

17 pages, 3192 KiB  
Article
Melting Layer Detection and Observation with the NCAR Airborne W-Band Radar
by Ulrike Romatschke
Remote Sens. 2021, 13(9), 1660; https://doi.org/10.3390/rs13091660 - 24 Apr 2021
Cited by 10 | Viewed by 3134
Abstract
A melting layer detection algorithm is developed for the NCAR 94 GHz airborne cloud radar (HIAPER CloudRadar, HCR). The detection method is based on maxima in the linear depolarization ratio and a discontinuity in the radial velocity field. A melting layer field is [...] Read more.
A melting layer detection algorithm is developed for the NCAR 94 GHz airborne cloud radar (HIAPER CloudRadar, HCR). The detection method is based on maxima in the linear depolarization ratio and a discontinuity in the radial velocity field. A melting layer field is added to the radar data, which provides detected, interpolated, and estimated altitudes of the melting layer and the altitude of the 0 °C isotherm detected in model temperature data. The icing level is defined as the lowest melting layer, and the cloud data are flagged as either above (cold) or below (warm) the icing level. Analysis of the detected melting layer shows that the offset between the 0 °C isotherm and the actual melting layer varies with cloud type: in heavy convection sampled in the tropics, the melting layer is found up to 500 m below the 0 °C isotherm, while in shallow clouds, the offset is much smaller or sometimes vanishes completely. A relationship between the offset and the particle fall speed both above and below the melting layer is established. Special phenomena, such as a lowering of the melting layer towards the center of storms or split melting layers, were observed. Full article
Show Figures

Figure 1

23 pages, 11017 KiB  
Article
Global Aerosol Classification Based on Aerosol Robotic Network (AERONET) and Satellite Observation
by Jianyu Lin, Yu Zheng, Xinyong Shen, Lizhu Xing and Huizheng Che
Remote Sens. 2021, 13(6), 1114; https://doi.org/10.3390/rs13061114 - 15 Mar 2021
Cited by 21 | Viewed by 5929
Abstract
The particle linear depolarization ratio (PLDR) and single scatter albedo (SSA) in 1020 nm from the Aerosol Robotic Network (AERONET) level 2.0 dataset was utilized among 52 stations to identify dust and dust dominated aerosols (DD), pollution dominated mixture (PDM), strongly absorbing aerosols [...] Read more.
The particle linear depolarization ratio (PLDR) and single scatter albedo (SSA) in 1020 nm from the Aerosol Robotic Network (AERONET) level 2.0 dataset was utilized among 52 stations to identify dust and dust dominated aerosols (DD), pollution dominated mixture (PDM), strongly absorbing aerosols (SA) and weakly absorbing aerosols (WA), investigate their spatial and temporal distribution, net radiative forcing and radiative forcing efficiency in global range, and further compare with VIIRS Deep Blue Production. The conclusion about net radiative forcing suggests that the high values of radiative forcing from dust and dust dominated aerosols, pollution dominated mixture both mainly come from western Africa. Strongly absorbing aerosols in South Africa and India contribute greatly to the net radiative forcing and the regions with relative high values of weakly absorbing aerosols are mainly located at East Asia and India. Lastly, the observation of VIIRS Deep Blue satellite monthly averaged products depicts the characteristics about spatial distribution of four kinds of aerosol well, the result from ground-based observation presents great significant to validate the measurements from remote sensing technology. Full article
(This article belongs to the Special Issue Artificial Intelligence in Remote Sensing of Atmospheric Environment)
Show Figures

Graphical abstract

18 pages, 4518 KiB  
Article
Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China
by Lili Yang, Zhiyuan Hu, Zhongwei Huang, Lina Wang, Wenyu Han, Yanping Yang, Huijie Tao and Jing Wang
Remote Sens. 2021, 13(6), 1056; https://doi.org/10.3390/rs13061056 - 10 Mar 2021
Cited by 24 | Viewed by 3578
Abstract
Dust storms have occurred frequently in northwest China and can dramatically reduce visibility and exacerbate air quality in downwind regions through long-range transport. In order to study the distribution characteristics of dust particles sizes, structures and concentrations in the process of dust storm, [...] Read more.
Dust storms have occurred frequently in northwest China and can dramatically reduce visibility and exacerbate air quality in downwind regions through long-range transport. In order to study the distribution characteristics of dust particles sizes, structures and concentrations in the process of dust storm, especially for the vertical distributions, the multi-observation platform composed of six Lidars and nine aerosol analytical instruments is first used to detect a severe dust storm event, which occurred in Northwest China on 3 May 2020. As a strong weather system process, the dust storm has achieved high intensity and wide range. When the intensity of a dust storm is at its strongest, the ratios of PM2.5 (particulate matter with diameter < 2.5 µm) and PM10 (particulate matter with diameter < 10 µm) (PM2.5/PM10) in cities examined were less than 0.2 and the extinction coefficients became greater than 1 km−1 based on Lidar observations. In addition, the growth rates of PM2.5 were higher than that of PM10. The dust particles mainly concentrated at heights of 2 km, after being transported about 200–300 km, vertical height increased by 1–2 km. Meanwhile, the dust concentration decreased markedly. Furthermore, the depolarization ratio showed that dust in the Tengger Desert was dominated by spherical particles. The linear relationships between 532 nm extinction coefficient and the concentration of PM2.5 and PM10 were found firstly and their R2 were 0.706 to 0.987. Our results could give more information for the physical schemes to simulate dust storms in specific models, which could improve the forecast of dust storms. Full article
Show Figures

Figure 1

Back to TopTop