Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground-Based Raman Lidar
2.2. Ground-Based Hand-Held Sunphotometer
2.3. Airborne Measurements
2.4. Modelling and Satellite Data
3. Temporal Evolution during the Field Campaign
3.1. Aerosol Optical Properties
3.1.1. Column-Integrated Parameters
3.1.2. Vertical Profiles
3.2. Meteorological Parameters Derived from the Ground-Based Lidar
4. Local Aerosol Conditions in Connection with the Valley Winds
5. Disturbed Conditions—Saharan Dust Event
5.1. Evidence of Dust-like Aerosols
5.1.1. What Can Be Inferred from the Weather Data
5.1.2. Coherence between Ground-Based and Airborne Lidars
5.1.3. Dust Signature on Particle Size Measurements
5.1.4. Variability of the LR, AEC, and PDR in the Dust Layer
5.2. Saharan Dust Origin
5.2.1. Evidence of Transport and Horizontal Spread
5.2.2. Dust Source Location
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffrezo, J.L.; Aymoz, G.; Cozic, J. Size Distribution of EC and OC in the Aerosol of Alpine Valleys during Summer and Winter. Atmos. Chem. Phys. 2005, 5, 2915–2925. [Google Scholar] [CrossRef] [Green Version]
- Pascal, M.; Yvon, J.M.; Corso, M.; Blanchard, M.; De Crouy-Chanel, P.; Medina, S. Conditions for a Meaningful Health Impact Assessment for Local Stakeholders: The Example of the Arve Valley in France. Atmosphere 2020, 11, 566. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-Term Air Pollution Exposure and Cardio-Respiratory Mortality: A Review. Environ. Health Glob. Access Sci. Source 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brulfert, G.; Chemel, C.; Chaxel, E.; Chollet, J.P. Modelling Photochemistry in Alpine Valleys. Atmos. Chem. Phys. 2005, 5, 2341–2355. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; McKee, T.B. Break-up of Temperature Inversions in Deep Mountain Valleys: Part II. Thermodynamic Model. J. Appl. Meteorol. 1982, 21, 290–302. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Zimmermann, H.; Fiedler, F. Analysis of Ground Based Operational Network Data Acquired during the September 1992 TRACT Campaign. Atmos. Environ. 1998, 32, 1229–1240. [Google Scholar] [CrossRef]
- Ambrosetti, P.; Anfossi, D.; Cieslik, S.; Graziani, G.; Lamprecht, R.; Marzorati, A.; Nodop, K.; Sandroni, S.; Stingele, A.; Zimmermann, H. Mesoscale Transport of Atmospheric Trace Constituents across the Central Alps: TRANSLAP Tracer Experiments. Atmos. Environ. 1998, 32, 1257–1272. [Google Scholar] [CrossRef]
- Lehning, M.; Richner, H.; Kok, G.L. Pollutant Transport over Complex Terrain: Flux and Budget Calculations for the Pollumet Field Campaign. Atmos. Environ. 1996, 30, 3027–3044. [Google Scholar] [CrossRef]
- Wotawa, G.; Kromp-Kolb, H. The Research Project VOTALP—General Objectives and Main Results. Atmos. Environ. 2000, 34, 1319–1322. [Google Scholar] [CrossRef]
- Grell, G.A.; Emeis, S.; Stockwell, W.R.; Schoenemeyer, T.; Forkel, R.; Michalakes, J.; Knoche, R.; Seidl, W. Application of a Multiscale, Coupled MM5/Chemistry Model to the Complex Terrain of the VOTALP Valley Campaign. Atmos. Environ. 2000, 34, 1435–1453. [Google Scholar] [CrossRef]
- Jaffrezo, J.L.; Aymoz, G.; Delaval, C.; Cozic, J. Seasonal Variations of the Water Soluble Organic Carbon Mass Fraction of Aerosol in Two Valleys of the French Alps. Atmos. Chem. Phys. 2005, 5, 2809–2821. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sartelet, K.N.N.; Bocquet, M.; Chazette, P.; Sicard, M.; D’Amico, G.; Léon, J.F.F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; et al. Assimilation of Lidar Signals: Application to Aerosol Forecasting in the Western Mediterranean Basin. Atmos. Chem. Phys. 2014, 14, 12031–12053. [Google Scholar] [CrossRef] [Green Version]
- Cordova, A.M.; Arévalo, J.; Marín, J.C.; Baumgardner, D.; Raga, G.B.; Pozo, D.; Ochoa, C.A.; Rondanelli, R. On the Transport of Urban Pollution in an Andean Mountain Valley. Aerosol Air Qual. Res. 2016, 16, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Chen, Y.; Wang, W.; Li, J.; Zhang, X.; Lu, G.; Che, Y.; Zhong, S.; Ma, S.; Li, P.; et al. Cable-Car Measurements of Vertical Aerosol Profiles Impacted by Mountain-Valley Breezes in Lushan Mountain, East China. Sci. Total Environ. 2021, 768, 144198. [Google Scholar] [CrossRef]
- Beniston, M.; Wolf, J.P.; Beniston-Rebetez, M.; Kolsch, H.J.; Rairoux, P.; Woste, L. Use of Lidar Measurements and Numerical Models in Air Pollution Research. J. Geophys. Res. 1990, 95, 9879–9894. [Google Scholar] [CrossRef]
- Chazette, P.; Couvert, P.; Randriamiarisoa, H.; Sanak, J.; Bonsang, B.; Moral, P.; Berthier, S.S.; Salanave, S.; Toussaint, F. Three-Dimensional Survey of Pollution during Winter in French Alps Valleys. Atmos. Environ. 2005, 39, 1035–1047. [Google Scholar] [CrossRef]
- Savov, P.B.; Skakalova, T.S.; Kolev, I.N. Lidar Investigation of the Temporal and Spatial Distribution of Atmospheric Aerosols in Mountain Valleys. J. Appl. Meteorol. 2002, 41, 528–541. [Google Scholar] [CrossRef]
- Brun, J.; Shrestha, P.; Barros, A.P. Mapping Aerosol Intrusion in Himalayan Valleys Using the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). Atmos. Environ. 2011, 45, 6382–6392. [Google Scholar] [CrossRef]
- Hoff, R.M.; Harwood, M.; Sheppard, A.; Froude, F.; Martin, J.B.; Strapp, W. Use of Airborne Lidar to Determine Aerosol Sources and Movement in the Lower Fraser Valley (LFV), BC. Atmos. Environ. 1997, 31, 2123–2134. [Google Scholar] [CrossRef]
- Kolev, N.; Grigorov, I.; Kolev, I.; Devara, P.C.S.; Raj, P.E.; Dani, K.K. Lidar and Sun Photometer Observations of Atmospheric Boundary-Layer Characteristics over an Urban Area in a Mountain Valley. Bound.-Layer Meteorol. 2007, 124, 99–115. [Google Scholar] [CrossRef]
- Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M. Temporal Consistency of Lidar Observations during Aerosol Transport Events in the Framework of the ChArMEx/ADRIMED Campaign at Minorca in June 2013. Atmos. Chem. Phys. 2016, 16, 2863–2875. [Google Scholar] [CrossRef] [Green Version]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of Atmospheric Aerosol Extinction Profiles with a Raman Lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Groß, S.; Freudenthaler, V.; Schepanski, K.; Toledano, C.; Schäfler, A.; Ansmann, A.; Weinzierl, B. Optical Properties of Long-Range Transported Saharan Dust over Barbados as Measured by Dual-Wavelength Depolarization Raman Lidar Measurements. Atmos. Chem. Phys. 2015, 15, 11067–11080. [Google Scholar] [CrossRef] [Green Version]
- Carnuth, W.; Trickl, T. Transport Studies with the IFU Three-Wavelength Aerosol Lidar during the VOTALP Mesolcina Experiment. Atmos. Environ. 2000, 34, 1425–1434. [Google Scholar] [CrossRef]
- Fasano, G.; Diémoz, H.; Fountoulakis, I.; Cassardo, C.; Kudo, R.; Siani, A.M.; Ferrero, L. Vertical Profile of the Clear-Sky Aerosol Direct Radiative Effect in an Alpine Valley, by the Synergy of Ground-Based Measurements and Radiative Transfer Simulations. Bull. Atmos. Sci. Technol. 2021, 2, 11. [Google Scholar] [CrossRef]
- Chazette, P.; Flamant, C.; Sodemann, H.; Totems, J.; Monod, A.; Dieudonné, E.; Baron, A.; Seidl, A.; Steen-Larsen, H.C.; Doira, P.; et al. Experimental Investigation of the Stable Water Isotope Distribution in an Alpine Lake Environment (L-WAIVE). Atmos. Chem. Phys. 2021, 21, 10911–10937. [Google Scholar] [CrossRef]
- Chazette, P.; Dabas, A.; Sanak, J.; Lardier, M.; Royer, P. French Airborne Lidar Measurements for Eyjafjallajökull Ash Plume Survey. Atmos. Chem. Phys. 2012, 12, 7059–7072. [Google Scholar] [CrossRef] [Green Version]
- Chazette, P.; Marnas, F.; Totems, J. The Mobile Water Vapor Aerosol Raman LIdar and Its Implication in the Framework of the HyMeX and ChArMEx Programs: Application to a Dust Transport Process. Atmos. Meas. Tech. 2014, 7, 1629–1647. [Google Scholar] [CrossRef] [Green Version]
- Totems, J.; Chazette, P. Calibration of a Water Vapour Raman Lidar with a Kite-Based Humidity Sensor. Atmos. Meas. Tech. 2016, 9, 1083–1094. [Google Scholar] [CrossRef]
- Totems, J.; Chazette, P.; Raut, J.J.-C. Accuracy of Current Arctic Springtime Water Vapour Estimates, Assessed by Raman Lidar. Q. J. R. Meteorol. Soc. 2019, 145, 1234–1249. [Google Scholar] [CrossRef]
- Totems, J.; Chazette, P.; Baron, A. Mitigation of Bias Sources for Atmospheric Temperature and Humidity in the Mobile Raman Weather and Aerosol Lidar (WALI). Atmos. Meas. Tech. 2021, 14, 7525–7544. [Google Scholar] [CrossRef]
- Komppula, M.; Mielonen, T.; Arola, A.; Korhonen, K.; Lihavainen, H.; Hyvärinen, A.P.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; et al. Technical Note: One Year of Raman-Lidar Measurements in Gual Pahari EUCAARI Site Close to New Delhi in India-Seasonal Characteristics of the Aerosol Vertical Structure. Atmos. Chem. Phys. 2012, 12, 4513–4524. [Google Scholar] [CrossRef] [Green Version]
- Ansmann, A.; Riebesell, M.; Wandinger, U.; Weitkamp, C.; Voss, E.; Lahmann, W.; Michaelis, W. Combined Raman Elastic-Backscatter LIDAR for Vertical Profiling of Moisture, Aerosol Extinction, Backscatter, and LIDAR Ratio. Appl. Phys. B Photophys. Laser Chem. 1992, 55, 18–28. [Google Scholar] [CrossRef]
- Royer, P.; Chazette, P.; Lardier, M.; Sauvage, L. Aerosol Content Survey by Mini N2-Raman Lidar: Application to Local and Long-Range Transport Aerosols. Atmos. Environ. 2011, 45, 7487–7495. [Google Scholar] [CrossRef]
- Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X. Raman Lidar Observations of Aerosol Optical Properties in 11 Cities from France to Siberia. Remote Sens. 2017, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Totems, J.; Chazette, P.; Shang, X.; Flamant, C.; Raut, J.-C.; Doerenbecher, A.; Ducroq, V.; Bock, O.; Marnas, F. Water Vapor Measurements by Mobile Raman Lidar over the Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles. In Proceedings of the EPJ Web of Conferences, The 27th International Laser Radar Conference (ILRC 27), New York City, NY, USA, 5–10 July 2015; Volume 119. [Google Scholar]
- Chazette, P.; Totems, J. Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation. Remote Sens. 2017, 9, 1226. [Google Scholar] [CrossRef] [Green Version]
- Chazette, P.; Totems, J.; Baron, A.; Flamant, C.; Bony, S. Trade-Wind Clouds and Aerosols Characterized by Airborne Horizontal Lidar Measurements during the EUREC4A Field Campaign. Earth Syst. Sci. Data 2020, 12, 2919–2936. [Google Scholar] [CrossRef]
- Chazette, P.; Sanak, J.; Dulac, F. New Approach for Aerosol Profiling with a Lidar Onboard an Ultralight Aircraft: Application to the African Monsoon Multidisciplinary Analysis. Environ. Sci. Technol. 2007, 41, 8335–8341. [Google Scholar] [CrossRef]
- Chazette, P.; Baron, A.; Flamant, C. Mesoscale Spatio-Temporal Variability of Airborne Lidar-Derived Aerosol Properties in the Barbados Region during EUREC4A. Atmos. Chem. Phys. 2022, 22, 1271–1292. [Google Scholar] [CrossRef]
- Kuula, J.; Friman, M.; Helin, A.; Niemi, J.V.; Aurela, M.; Timonen, H.; Saarikoski, S. Utilization of Scattering and Absorption-Based Particulate Matter Sensors in the Environment Impacted by Residential Wood Combustion. J. Aerosol Sci. 2020, 150, 105671. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.B.; Cohen, M.D.; Ngan, F.; Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.B.; et al. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Salmonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced Facility Instrument for Studies of the Earth as a System. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aerosol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Legrand, M.; Cautenet, G.; Buriez, J.C. Thermal Impact of Saharan Dust over Land. Part II: Application to Satellite IR Remote Sensing. J. Appl. Meteorol. 1992, 31, 181–193. [Google Scholar] [CrossRef]
- Chazette, P.; Royer, P. Springtime Major Pollution Events by Aerosol over Paris Area: From a Case Study to a Multiannual Analysis. J. Geophys. Res. Atmos. 2017, 122, 8101–8119. [Google Scholar] [CrossRef]
- Raut, J.-C.; Chazette, P. Retrieval of Aerosol Complex Refractive Index from a Synergy between Lidar, Sunphotometer and in Situ Measurements during LISAIR Experiment. Atmos. Chem. Phys. 2007, 7, 2797–2815. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically Resolved Separation of Dust and Smoke over Cape Verde Using Multiwavelength Raman and Polarization Lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Amiridis, V.; Balis, D.; Giannakaki, E.; Kazadzis, S.; Arola, A.; Gerasopoulos, E. Characterization of the Aerosol Type Using Simultaneous Measurements of the Lidar Ratio and Estimations of the Single Scattering Albedo. Atmos. Res. 2011, 101, 46–53. [Google Scholar] [CrossRef]
- Müller, D.; Lee, K.-H.; Gasteiger, J.; Tesche, M.; Weinzierl, B.; Kandler, K.; Müller, T.; Toledano, C.; Otto, S.; Althausen, D.; et al. Comparison of Optical and Microphysical Properties of Pure Saharan Mineral Dust Observed with AERONET Sun Photometer, Raman Lidar, and in Situ Instruments during SAMUM 2006. J. Geophys. Res. 2012, 117, 7211. [Google Scholar] [CrossRef] [Green Version]
- Raut, J.-C.C.; Chazette, P. Assessment of Vertically-Resolved PM10 from Mobile Lidar Observations. Atmos. Chem. Phys. 2009, 9, 8617–8638. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, A.; Nakamura, T. Calculation of the Calibration Constant of Polarization Lidar and Its Dependency on Atmospheric Temperature. Opt. Express 2002, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.M.; Vaughan, M.A.; Hostetler, C.A.; Hunt, W.H.; Winker, D.M. Calibration Technique for Polarization-Sensitive Lidars. J. Atmos. Ocean. Technol. 2006, 23, 683–699. [Google Scholar] [CrossRef]
- Sodemann, H.; Palmer, A.S.; Schwierz, C.; Schwikowski, M.; Wernli, H. The Transport History of Two Saharan Dust Events Archived in an Alpine Ice Core. Atmos. Chem. Phys. 2006, 6, 667–688. [Google Scholar] [CrossRef] [Green Version]
- Hamonou, E.; Chazette, P.; Balis, D.; Dulac, F.; Schneider, X.; Galani, E.; Ancellet, G.; Papayannis, A. Characterization of the Vertical Structure of Saharan Dust Export to the Mediterranean Basin. J. Geophys. Res. 1999, 104, 22257. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Chazette, P.; Bergametti, G.; Dulac, F.; Legrand, M. Mapping the Aerodynamic Roughness Length of Desert Surfaces from the POLDER/ADEOS Bi-Directional Reflectance Product. Int. J. Remote Sens. 2004, 25, 603–626. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Léon, J.F.; Mahowald, N.M. Modeling Mineral Dust Emissions from the Sahara Desert Using New Surface Properties and Soil Database. J. Geophys. Res. Atmos. 2008, 113, 1–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chazette, P.; Totems, J. Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event. Remote Sens. 2023, 15, 1070. https://doi.org/10.3390/rs15041070
Chazette P, Totems J. Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event. Remote Sensing. 2023; 15(4):1070. https://doi.org/10.3390/rs15041070
Chicago/Turabian StyleChazette, Patrick, and Julien Totems. 2023. "Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event" Remote Sensing 15, no. 4: 1070. https://doi.org/10.3390/rs15041070
APA StyleChazette, P., & Totems, J. (2023). Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event. Remote Sensing, 15(4), 1070. https://doi.org/10.3390/rs15041070