Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing
Abstract
:1. Introduction
2. Methods and Tools
2.1. Moderate-Resolution Imaging Spectroradiometer (MODIS): Active Fire Data and Burned Area Product
2.2. CAMS Reanalysis Data on Different Pressure Levels
2.3. FLEXPART Model
2.4. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Satellite
2.5. The Libradtran Radiative Transfer Model
3. Results and Discussion
3.1. Aerosol Geometrical and Optical Properties per Study Region
3.2. Chemical Properties: CO and O3 Variations over the Study Area
3.3. Radiative Forcing of the Event
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pressure Level (hPa) | 950 | 900 | 850 | 800 | 700 | 600 | 500 | 400 | 300 | 200 |
---|---|---|---|---|---|---|---|---|---|---|
CO (%) | ||||||||||
GR | 8 ± 14 | 8 ± 13 | 7 ± 14 | 6 ± 14 | 6 ± 14 | 9 ± 11 | 11 ± 10 | 12 ± 12 | 12 ± 14 | 14 ± 24 |
YR | 14 ± 12 | 14 ± 13 | 14 ± 16 | 14 ± 18 | 15 ± 20 | 18 ± 22 | 18 ± 20 | 13 ± 14 | 8 ± 18 | 4 ± 21 |
RR | 10 ± 9 | 10 ± 10 | 10 ± 11 | 12 ± 12 | 11 ± 10 | 13 ± 14 | 15 ± 15 | 17 ± 15 | 18 ± 19 | 12 ± 24 |
BR | 3 ± 19 | 5 ± 22 | 7 ± 24 | 9 ± 24 | 13 ± 24 | 11 ± 20 | 8 ± 16 | 7 ± 16 | 7 ± 20 | 10 ± 27 |
O3 (%) | ||||||||||
GR | 3 ± 20 | 5 ± 19 | 9 ± 22 | 9 ± 21 | 8 ± 19 | 9 ± 17 | 7 ± 20 | 26 ± 28 | 2 ± 29 | 2 ± 36 |
YR | 10 ± 17 | 8 ± 16 | 5 ± 17 | 7 ± 20 | 15 ± 21 | 14 ± 21 | 12 ± 21 | 32 ± 30 | 10 ± 38 | 18 ± 51 |
RR | 9 ± 23 | 9 ± 19 | 8 ± 19 | 10 ± 20 | 11 ± 16 | 10 ± 16 | 7 ± 19 | 19 ± 31 | 2 ± 34 | 13 ± 44 |
BR | 5 ± 21 | 6 ± 19 | 5 ± 17 | 6 ± 17 | 7 ± 17 | 8 ± 18 | 11 ± 20 | 26 ± 24 | 9 ± 35 | 12 ± 44 |
References
- Yang, X.; Zhao, C.; Yang, Y.; Yan, X.; Fan, H. Statistical Aerosol Properties Associated with Fire Events from 2002 to 2019 and a Case Analysis in 2019 over Australia. Atmos. Chem. Phys. 2021, 21, 3833–3853. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Ohneiser, K.; Haarig, M.; Engelmann, R.; Althausen, D.; Hanssen, I.; Gausa, M.; Pietruczuk, A.; Szkop, A.; et al. The Unprecedented 2017–2018 Stratospheric Smoke Event: Decay Phase and Aerosol Properties Observed with EARLINET. Atmos. Chem. Phys. 2019, 19, 15183–15198. [Google Scholar] [CrossRef] [Green Version]
- Ohneiser, K.; Ansmann, A.; Kaifler, B.; Chudnovsky, A.; Barja, B.; Knopf, D.A.; Kaifler, N.; Baars, H.; Seifert, P.; Villanueva, D.; et al. Australian Wildfire Smoke in the Stratosphere: The Decay Phase in 2020/21 and Impact on Ozone Depletion. Atmos. Chem. Phys. Discuss. 2022, 1–41. [Google Scholar]
- Ohneiser, K.; Ansmann, A.; Baars, H.; Seifert, P.; Barja, B.; Jimenez, C.; Radenz, M.; Teisseire, A.; Floutsi, A.; Haarig, M.; et al. Smoke of Extreme Australian Bushfires Observed in the Stratosphere over Punta Arenas, Chile, in January 2020: Optical Thickness, Lidar Ratios, and Depolarization Ratios at 355 and 532 Nm. Atmos. Chem. Phys. 2020, 20, 8003–8015. [Google Scholar] [CrossRef]
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian Wildfires Generated a Persistent Smoke-Charged Vortex Rising up to 35 Km Altitude. Commun. Earth Environ. 2020, 1, 22. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Yang, Y.; Fan, H. Long-Term Multi-Source Data Analysis about the Characteristics of Aerosol Optical Properties and Types over Australia. Atmos. Chem. Phys. 2021, 21, 3803–3825. [Google Scholar] [CrossRef]
- Ansmann, A.; Ohneiser, K.; Mamouri, R.E.; Knopf, D.A.; Veselovskii, I.; Baars, H.; Engelmann, R.; Foth, A.; Jimenez, C.; Seifert, P.; et al. Tropospheric and Stratospheric Wildfire Smoke Profiling with Lidar: Mass, Surface Area, CCN, and INP Retrieval. Atmos. Chem. Phys. 2021, 21, 9779–9807. [Google Scholar] [CrossRef]
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P.; et al. Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere 2020, 11, 84. [Google Scholar] [CrossRef] [Green Version]
- Ponczek, M.; Franco, M.A.; Carbone, S.; Rizzo, L.V.; Monteiro, D.; Morais, F.G.; Duarte, A.; Barbosa, H.M.J.; Artaxo, P. Environmental Science: Linking the Chemical Composition and Optical Properties of Biomass Burning Aerosols in Amazonia. Environ. Sci. Atmos. 2022, 2, 252–269. [Google Scholar] [CrossRef]
- Müller, D.; Mattis, I.; Ansmann, A.; Wandinger, U.; Ritter, C.; Kaiser, D. Multiwavelength Raman Lidar Observations of Particle Growth during Long-Range Transport of Forest-Fire Smoke in the Free Troposphere. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D. Depolarization and Lidar Ratios at 355, 532, and 1064 Nm and Microphysical Properties of Aged Tropospheric and Stratospheric Canadian Wildfire Smoke. Atmos. Chem. Phys. 2018, 18, 11847–11861. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Goloub, P.; Veselovskii, I.; Bravo-Aranda, J.A.; Elisabeta Popovici, I.; Podvin, T.; Haeffelin, M.; Lopatin, A.; Dubovik, O.; Pietras, C.; et al. Long-Range-Transported Canadian Smoke Plumes in the Lower Stratosphere over Northern France. Atmos. Chem. Phys. 2019, 19, 1173–1193. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.S. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere. Treatise Geochem. Second Ed. 2013, 5, 139–150. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Burling, I.R.; Meinardi, S.; Simpson, I.; Blake, D.R.; McMeeking, G.R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; et al. Measurements of Reactive Trace Gases and Variable O3 Formation Rates in Some South Carolina Biomass Burning Plumes. Atmos. Chem. Phys. 2013, 13, 1141–1165. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.A.; Bravo, M.A.; Bell, M.L. Particulate Air Pollution from Wildfires in the Western US under Climate Change. Clim. Chang. 2016, 138, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Brey, S.J.; Fischer, E.V. Smoke in the City: How Often and Where Does Smoke Impact Summertime Ozone in the United States? Environ. Sci. Technol. 2016, 50, 1288–1294. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.; Downey, N.; Pfister, G.; Boynard, A.; Reid, S.B. Impact of Wildfires on Ozone Exceptional Events in the Western U.S. Environ. Sci. Technol. 2013, 47, 11065–11072. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Cooper, O.R.; Fiore, A.M.; Henderson, B.H.; Tonnesen, G.S.; Russell, A.G.; Henze, D.K.; Langford, A.O.; Lin, M.; Moore, T. Scientific Assessment of Background Ozone over the U.S.: Implications for Air Quality Management. Elementa 2018, 6, 56. [Google Scholar] [CrossRef]
- Bourgeois, I.; Peischl, J.; Andrew Neuman, J.; Brown, S.S.; Thompson, C.R.; Aikin, K.C.; Allen, H.M.; Angot, H.; Apel, E.C.; Baublitz, C.B.; et al. Large Contribution of Biomass Burning Emissions to Ozone throughout the Global Remote Troposphere. Proc. Natl. Acad. Sci. USA 2021, 118, e2109628118. [Google Scholar] [CrossRef]
- Selimovic, V.; Yokelson, R.J.; McMeeking, G.R.; Coefield, S. Aerosol Mass and Optical Properties, Smoke Influence on O3, and High NO3 Production Rates in a Western U.S. City Impacted by Wildfires. J. Geophys. Res. Atmos. 2020, 125, e2020JD032791. [Google Scholar] [CrossRef]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s Catastrophic 2019/20 Bushfire Season on Communities and Environment. Retrospective Analysis and Current Trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Hirsch, E.; Koren, I. Record-Breaking Aerosol Levels Explained by Smoke Injection into the Stratosphere. Science 2021, 371, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Kablick, G.P.; Allen, D.R.; Fromm, M.D.; Nedoluha, G.E. Australian PyroCb Smoke Generates Synoptic-Scale Stratospheric Anticyclones. Geophys. Res. Lett. 2020, 47, e2020GL088101. [Google Scholar] [CrossRef]
- Peterson, D.A.; Campbell, J.R.; Hyer, E.J.; Fromm, M.D.; Kablick, G.P.; Cossuth, J.H.; DeLand, M.T. Wildfire-Driven Thunderstorms Cause a Volcano-like Stratospheric Injection of Smoke. NPJ Clim. Atmos. Sci. 2018, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Davis, S.M.; Toon, O.B.; Portmann, R.W.; Bardeen, C.G.; Barnes, J.E.; Telg, H.; Maloney, C.; Rosenlof, K.H. Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke. Geophys. Res. Lett. 2021, 48, e2021GL092609. [Google Scholar] [CrossRef]
- Li, M.; Shen, F.; Sun, X. 2019–2020 Australian Bushfire Air Particulate Pollution and Impact on the South Pacific Ocean. Sci. Rep. 2021, 11, 12288. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; Von Hobe, M.; Berthet, G.; Smale, D.; Krysztofiak, G.; Xue, C.; Qiu, C.; Jégou, F.; Ouerghemmi, I.; et al. Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire Season. Front. Environ. Sci. 2021, 9, 10-3389. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Azzi, M.; White, S.; Salter, D.; Trieu, T.; Morgan, G.; Rahman, M.; Watt, S.; Riley, M.; Chang, L.T.C.; et al. The Summer 2019–2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia. Int. J. Environ. Res. Public Health 2021, 18, 3538. [Google Scholar] [CrossRef]
- Tencé, F.; Jumelet, J.; Bekki, S.; Khaykin, S.; Sarkissian, A.; Keckhut, P. Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville. J. Geophys. Res. Atmos. 2022, 127, e2021JD035349. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barr, J.; Benedictow, A.; Blechschmidt, A.M.; Jose Dominguez, J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.; Benedetti, A.; Inness, A.; Engelen, J.R.; Jones, L.; Huijnen, V.; Remy, S.; Parrington, M.; Suttie, M.; Bozzo, A.; et al. The CAMS Interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmos. Chem. Phys. 2017, 17, 1945–1983. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Groot Zwaaftink, C.D.; et al. The Lagrangian Particle Dispersion Model FLEXPART Version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef] [Green Version]
- Solomos, S.; Gialitaki, A.; Marinou, E.; Proestakis, E.; Amiridis, V.; Baars, H.; Komppula, M.; Ansmann, A. Modeling and Remote Sensing of an Indirect Pyro-Cb Formation and Biomass Transport from Portugal Wildfires towards Europe. Atmos. Environ. 2019, 206, 303–315. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and Optical Depth Retrievals for CALIPSO’s Version 4 Data Release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Wainker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef] [Green Version]
- Ansmann, A.; Ohneiser, K.; Chudnovsky, A.; Baars, H.; Engelmann, R. CALIPSO Aerosol-Typing Scheme Misclassified Stratospheric Fire Smoke: Case Study From the 2019 Siberian Wildfire Season. Front. Environ. Sci. 2021, 9, 537. [Google Scholar] [CrossRef]
- Bourgeois, Q.; Ekman, A.M.L.; Krejci, R. Aerosol Transport over the Andes from the Amazon Basin to the Remote Pacific Ocean: A Multiyear CALIOP Assessment. J. Geophys. Res. 2015, 120, 8411–8425. [Google Scholar] [CrossRef]
- Papanikolaou, C.A.; Giannakaki, E.; Papayannis, A.; Mylonaki, M.; Soupiona, O. Canadian Biomass Burning Aerosol Properties Modification during a Long-Ranged Event on August 2018. Sensors 2020, 20, 5442. [Google Scholar] [CrossRef] [PubMed]
- Noel, V.; Chepfer, H.; Hoareau, C.; Reverdy, M.; Cesana, G. Effects of Solar Activity on Noise in CALIOP Profiles above the South Atlantic Anomaly. Atmos. Meas. Tech. 2014, 7, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Wang, Z.; Zhang, B. An Adjustment Approach for Aerosol Optical Depth Inferred from Calipso. Remote Sens. 2021, 13, 3085. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, J.H.; Tackett, J.L.; Su, H.; Fu, R. Seasonal and Diurnal Variations of Aerosol Extinction Profile and Type Distribution from CALIPSO 5-Year Observations. J. Geophys. Res. Atmos. 2013, 118, 4572–4596. [Google Scholar] [CrossRef]
- Eloranta, E.W.; Piironen, P. Depolarization measurements with the high spectral resolution lidar. In Proceedings of the 17th ILRC, Sendai, Japan, 25–29 July 1994; Volume 63, pp. 147–168. [Google Scholar] [CrossRef] [Green Version]
- She, C.-Y. Spectral Structure of Laser Light Scattering Revisited: Bandwidths of Nonresonant Scattering Lidars. Appl. Opt. 2001, 40, 4875. [Google Scholar] [CrossRef]
- Behrendt, A.; Nakamura, T. Calculation of the Calibration Constant of Polarization Lidar and Its Dependency on Atmospheric Temperature. Opt. Express 2002, 10, 805. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The LibRadtran Software Package for Radiative Transfer Calculations (Version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.; Clough, S.; Kneizys, F. AFGL Atmospheric Constituent Profiles; AFGL-TR-86-0110; Defense Technical Information Center: Fort Belvoir, VA, USA, 1986; 46p. [Google Scholar]
- Soupiona, O.; Papayannis, A.; Kokkalis, P.; Foskinis, R.; Sánchez Hernández, G.; Ortiz-Amezcua, P.; Mylonaki, M.; Papanikolaou, C.A.; Papagiannopoulos, N.; Samaras, S.; et al. EARLINET Observations of Saharan Dust Intrusions over the Northern Mediterranean Region (2014–2017): Properties and Impact on Radiative Forcing. Atmos. Chem. Phys. 2020, 20, 15147–15166. [Google Scholar] [CrossRef]
- Kokkalis, P.; Soupiona, O.; Papanikolaou, C.A.; Foskinis, R.; Mylonaki, M.; Solomos, S.; Vratolis, S.; Vasilatou, V.; Kralli, E.; Anagnou, D.; et al. Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period. Atmosphere 2021, 12, 318. [Google Scholar] [CrossRef]
- Mona, L.; Amodeo, A.; Pandolfi, M.; Pappalardo, G. Saharan Dust Intrusions in the Mediterranean Area: Three Years of Raman Lidar Measurements. J. Geophys. Res. Atmos. 2006, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Campetella, C.M.; Vera, C.S. The Influence of the Andes Mountains on the South American Low-Level Flow. Geophys. Res. Lett. 2002, 29, 6–9. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Molina, A.; Farias, M. Andean Uplift, Ocean Cooling and Atacama Hyperaridity: A Climate Modeling Perspective. Earth Planet. Sci. Lett. 2010, 292, 39–50. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Vaughan, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol Classification from Airborne HSRL and Comparisons with the CALIPSO Vertical Feature Mask. Atmos. Meas. Tech. 2013, 6, 1397–1412. [Google Scholar] [CrossRef] [Green Version]
- Mylonaki, M.; Papayannis, A.; Papanikolaou, C.-A.; Foskinis, R.; Soupiona, O.; Maroufidis, G.; Anagnou, D.; Kralli, E. Tropospheric Vertical Profiling of the Aerosol Backscatter Coefficient and the Particle Linear Depolarization Ratio for Different Aerosol Mixtures during the PANACEA Campaign in July 2019 at Volos, Greece. Atmos. Environ. 2021, 247, 118184. [Google Scholar] [CrossRef]
- Tan, I.; Storelvmo, T.; Choi, Y.S. Spaceborne Lidar Observations of the Ice-Nucleating Potential of Dust, Polluted Dust, and Smoke Aerosols in Mixed-Phase Clouds. J. Geophys. Res. 2014, 119, 6653–6665. [Google Scholar] [CrossRef]
- Vaughan, G.; Draude, A.P.; Ricketts, H.M.A.; Schultz, D.M.; Adam, M.; Sugier, J.; Wareing, D.P. Transport of Canadian Forest Fire Smoke over the UK as Observed by Lidar. Atmos. Chem. Phys. 2018, 18, 11375–11388. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Ye, J.; Ohno, P.; Zhai, J.; Han, Y.; Liu, P.; Wang, J.; Zaveri, R.A.; Martin, S.T. Humidity Dependence of the Condensational Growth of α-Pinene Secondary Organic Aerosol Particles. Environ. Sci. Technol. 2021, 55, 14360–14369. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J.Y.; Shen, X.J.; Zhang, Y.M.; Che, H.; Ma, Q.L.; Zhang, Y.W.; Zhang, X.Y.; Ogren, J.A. Observations of Relative Humidity Effects on Aerosol Light Scattering in the Yangtze River Delta of China. Atmos. Chem. Phys. 2015, 15, 8439–8454. [Google Scholar] [CrossRef] [Green Version]
- Baylon, P.; Jaffe, D.A.; Wigder, N.L.; Gao, H.; Hee, J. Ozone Enhancement in Western US Wildfire Plumes at the Mt. Bachelor Observatory: The Role of NOx. Atmos. Environ. 2015, 109, 297–304. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry, and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Heinold, B.; Baars, H.; Barja, B.; Christensen, M.; Kubin, A.; Ohneiser, K.; Schepanski, K.; Schutgens, N.; Senf, F.; Schrödner, R.; et al. Important Role of Stratospheric Injection Height for the Distribution and Radiative Forcing of Smoke Aerosol from the 2019/2020 Australian Wildfires. Atmos. Chem. Phys. Discuss. 2021, 1–20. [Google Scholar]
- Chang, D.Y.; Yoon, J.; Lelieveld, J.; Park, S.K.; Yum, S.S.; Kim, J.; Jeong, S. Direct Radiative Forcing of Biomass Burning Aerosols from the Extensive Australian Wildfires in 2019–2020. Environ. Res. Lett. 2021, 16, 044041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolaou, C.-A.; Kokkalis, P.; Soupiona, O.; Solomos, S.; Papayannis, A.; Mylonaki, M.; Anagnou, D.; Foskinis, R.; Gidarakou, M. Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere 2022, 13, 867. https://doi.org/10.3390/atmos13060867
Papanikolaou C-A, Kokkalis P, Soupiona O, Solomos S, Papayannis A, Mylonaki M, Anagnou D, Foskinis R, Gidarakou M. Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere. 2022; 13(6):867. https://doi.org/10.3390/atmos13060867
Chicago/Turabian StylePapanikolaou, Christina-Anna, Panagiotis Kokkalis, Ourania Soupiona, Stavros Solomos, Alexandros Papayannis, Maria Mylonaki, Dimitra Anagnou, Romanos Foskinis, and Marilena Gidarakou. 2022. "Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing" Atmosphere 13, no. 6: 867. https://doi.org/10.3390/atmos13060867
APA StylePapanikolaou, C. -A., Kokkalis, P., Soupiona, O., Solomos, S., Papayannis, A., Mylonaki, M., Anagnou, D., Foskinis, R., & Gidarakou, M. (2022). Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere, 13(6), 867. https://doi.org/10.3390/atmos13060867