Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = partially saturated porous media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12075 KiB  
Article
Offset Temperature and Amplitude–Frequency Effect on Convection Heat Transfer in Partially Gradient Porous Cavity with Different Outlet Port Locations
by Luma F. Ali and Amjad J. Humaidi
Processes 2025, 13(7), 2279; https://doi.org/10.3390/pr13072279 - 17 Jul 2025
Viewed by 328
Abstract
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of [...] Read more.
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of 10 and 20 PPI saturated with nanofluid, was assessed numerically. The left wall was heated uniformly and non-uniformly by applying multi-frequency spatial heating following a sinusoidal function. Governing equations, including continuity, the Darcy–Brinkmann–Forchheimer model, and local thermal non-equilibrium energy equations, were adopted and solved by employing the finite volume method. The influences of relevant parameters, including nanoparticle concentrations 0%φ10%, Reynolds number (1Re100), inlet and outlet port aspect ratios 0.1D/H0.4, three outlet vent opening locations (So=0 left, (So=H/2D/2) middle, and (So=HD) right), sinusoidal offset temperature (θo=0.5, 1), frequency (f=1, 3, 5), and amplitude (A=01), were examined. The results demonstrate that flow and heat transfer fields are impacted mainly by these parameters. Streamlines are more intensified at the upper-left corner when the outlet opening vent is shifted towards the right-corner upper wall. Fluid- and solid-phase Nusselt number increases Re, D/H, θo, A, and f are raised, specifically when A0.3. The Nusselt number remains constant when the frequency is raised from 3 to 5, definitely when D/H0.25. In uniform and non-uniform heating cases, the Nusselt number of both phases remains constant as the outlet port is shifted right for Re10 and slightly for higher Re as the outlet vent location is translated from left to right. Full article
Show Figures

Figure 1

18 pages, 6692 KiB  
Protocol
Study Protocol of Predictive Dynamics of Microbiological Contamination of Groundwater in the Earth Critical Zone and Impact on Human Health (DY.MI.CR.ON Project)
by Marco Verani, Osvalda De Giglio, Maria Clementina Caputo, Giorgio Cassiani, Mirco Milani, Annalaura Carducci, Ileana Federigi, Alessandra Pagani, Alessandra Angori, Francesco Triggiano, Antonella Francesca Savino, Debora Colella, Francesco Bagordo, Maria Antonella De Donno, Tiziana Grassi, Silvia Brigida, Lorenzo De Carlo, Antonietta Celeste Turturro, Mert Çetin Ekiz, Valentina Prigiobbe, Alessandro Ghirotto, Alessandro D’Emilio, Simona Consoli, Salvatore Barresi, Federica Bivona and Maria Teresa Montagnaadd Show full author list remove Hide full author list
Water 2025, 17(3), 294; https://doi.org/10.3390/w17030294 - 22 Jan 2025
Cited by 1 | Viewed by 1415
Abstract
Groundwater is one of the major sources of water supply for human needs. But anthropic activities such as agriculture are causing significant volume depletion and quality deterioration, favoring microbial contamination that has a negative impact on human health. The geological characteristics of the [...] Read more.
Groundwater is one of the major sources of water supply for human needs. But anthropic activities such as agriculture are causing significant volume depletion and quality deterioration, favoring microbial contamination that has a negative impact on human health. The geological characteristics of the ground can influence the transport of microorganisms, especially if made of permeable rock. Furthermore, irrigation with untreated or partially treated wastewater can represent an additional health risk due to the potential transmission of pathogens to food. The aim of our research is to provide an interdisciplinary perspective on this issue by integrating hygienic, geological, and agronomic skills. Water samplings are scheduled seasonally by four monitoring campaigns in five sampling points placed in two Southern Italy regions, Apulia (one point at the outlet and two wells near the wastewater plant at Carpignano Salentino, Lecce province, Italy) and Sicily (two wells at Scicli and Pozzallo, Ragusa province, Italy) Laboratory experiments of microorganism transport in permeable rocks will be carried out under saturated and unsaturated conditions. A mathematical model of transport through porous media will be implemented and validated with laboratory measurements. The model will be used to develop a monitoring tool to control sites in Apulia and Sicily where periodic cultural and molecular detection of pathogenic bacteria, viruses, and protozoa will also be taken. In addition, an analysis of the microbiological contamination of herbaceous crops due to the use of low-quality water will be conducted to assess the Quantitative Microbial Risk Assessment (QMRA). The project will provide methodological tools to evaluate anthropogenic pressures and their impact on environmental matrices. The results will allow these pressures to be modulated to minimize environmental and agri-food microbiological contamination and protect public health. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

30 pages, 1045 KiB  
Article
Pressure Behavior in a Linear Porous Media for Partially Miscible Displacement of Oil by Gas
by Luara K. S. Sousa, Wagner Q. Barros, Adolfo P. Pires and Alvaro M. M. Peres
Fluids 2025, 10(2), 21; https://doi.org/10.3390/fluids10020021 - 21 Jan 2025
Viewed by 883
Abstract
Miscible gas flooding improves oil displacement through mass exchange between oil and gas phases. It is one of the most efficient enhanced oil recovery methods for intermediate density oil reservoirs. In this work, analytical solutions for saturation, concentration and pressure are derived for [...] Read more.
Miscible gas flooding improves oil displacement through mass exchange between oil and gas phases. It is one of the most efficient enhanced oil recovery methods for intermediate density oil reservoirs. In this work, analytical solutions for saturation, concentration and pressure are derived for oil displacement by a partially miscible gas injection at a constant rate. The mathematical model considers two-phase, three-component fluid flow in a one-dimensional homogeneous reservoir initially saturated by a single oil phase. Phase saturations and component concentrations are described by a 2×2 hyperbolic system of partial differential equations, which is solved by the method of characteristics. Once this Goursat–Riemann problem is solved, the pressure drop between two points in the porous media is obtained by the integration of Darcy’s law. The solution of this problem may present three different fluid regions depending on the rock–fluid parameters: a single-phase gas region near the injection point, followed by a two-phase region where mass transfer takes place and a single-phase oil region. We considered the single-phase gas and the two-phase gas/oil regions as incompressible, while the single-phase oil region may be incompressible or slightly compressible. The solutions derived in this work are applied for a specific set of rock and fluid properties. For this data set, the two-phase region displays rarefaction waves, shock waves and constant states. The pressure behavior depends on the physical model (incompressible, compressible and finite or infinite porous media). In all cases, the injection pressure is the result of the sum of two terms: one represents the effect of the mobility contrast between phases and the other represents the single-phase oil solution. The solutions obtained in this work are compared to an equivalent immiscible solution, which shows that the miscible displacement is more efficient. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

22 pages, 7564 KiB  
Article
Computational Modeling of Natural Convection in Nanofluid-Saturated Porous Media: An Investigation into Heat Transfer Phenomena
by Janja Kramer Stajnko, Jure Ravnik, Renata Jecl and Matjaž Nekrep Perc
Mathematics 2024, 12(23), 3653; https://doi.org/10.3390/math12233653 - 21 Nov 2024
Viewed by 1112
Abstract
A numerical study was carried out to analyze the phenomenon of natural convection in a porous medium saturated with nanofluid. In the study, the boundary element method was used for computational modeling. The fluid flow through a porous matrix is described using the [...] Read more.
A numerical study was carried out to analyze the phenomenon of natural convection in a porous medium saturated with nanofluid. In the study, the boundary element method was used for computational modeling. The fluid flow through a porous matrix is described using the Darcy–Brinkman–Forchheimer momentum equation. In addition, a mathematical model for nanofluids was used, which follows a single-phase approach and assumes that the nanoparticles within a fluid can be treated as an independent fluid with effective properties. A combination of single- and sub-domain boundary element methods was used to solve the relevant set of partial differential equations. The method was originally developed for pure flow scenarios, but also proves to be effective in the context of fluid flow through porous media. The results are calculated for the case of two- and three-dimensional square cavities. In addition to various values of dimensionless control parameters, including the porous Rayleigh number (Rap), Darcy number (Da), porosity (ϕ) and nanoparticle volume fractions (φ), the effects of the inclination angle of the cavity on the overall heat transfer (expressed by the Nusselt number (Nu)) and fluid flow characteristics were investigated. The results indicate a pronounced dependence of the overall heat transfer on the introduction of nanoparticles and inclination angle. The heat transfer in a two-dimensional cavity is increased for higher values of Darcy number in the conduction flow regime, while it is suppressed for lower values of Darcy number in the Darcy flow regime. In the case of a three-dimensional cavity, increasing the volume fraction of nanoparticles leads to a decrease in heat transfer, and furthermore, increasing the inclination angle of the cavity considerably weakens the buoyancy flow. Full article
(This article belongs to the Special Issue Computational Mechanics and Applied Mathematics)
Show Figures

Figure 1

17 pages, 10952 KiB  
Article
Density-Driven CO2 Dissolution in Depleted Gas Reservoirs with Bottom Aquifers
by Xiaocong Lyu, Fang Cen, Rui Wang, Huiqing Liu, Jing Wang, Junxi Xiao and Xudong Shen
Energies 2024, 17(14), 3491; https://doi.org/10.3390/en17143491 - 16 Jul 2024
Cited by 1 | Viewed by 1279
Abstract
Depleted gas reservoirs with bottom water show significant potential for long-term CO2 storage. The residual gas influences mass-transfer dynamics, further affecting CO2 dissolution and convection in porous media. In this study, we conducted a series of numerical simulations to explore how [...] Read more.
Depleted gas reservoirs with bottom water show significant potential for long-term CO2 storage. The residual gas influences mass-transfer dynamics, further affecting CO2 dissolution and convection in porous media. In this study, we conducted a series of numerical simulations to explore how residual-gas mixtures impact CO2 dissolution trapping. Moreover, we analyzed the CO2 dissolution rate at various stages and delineated the initiation and decline of convection in relation to gas composition, thereby quantifying the influence of residual-gas mixtures. The findings elucidate that the temporal evolution of the Sherwood number observed in the synthetic model incorporating CTZ closely parallels that of the single-phase model, but the order of magnitude is markedly higher. The introduction of CTZ serves to augment gravity-induced convection and expedites the dissolution of CO2, whereas the presence of residual-gas mixtures exerts a deleterious impact on mass transfer. The escalation of residual gas content concomitantly diminishes the partial pressure and solubility of CO2. Consequently, there is an alleviation of the concentration and density differentials between saturated water and fresh water, resulting in the attenuation of the driving force governing CO2 diffusion and convection. This leads to a substantial reduction in the rate of CO2 dissolution, primarily governed by gravity-induced fingering, thereby manifesting as a delay in the onset and decay time of convection, accompanied by a pronounced decrement in the maximum Sherwood number. In the field-scale simulation, the injected CO2 improves the reservoir pressure, further pushing more gas to the producers. However, due to the presence of CH4 in the post-injection process, the capacity for CO2 dissolution is reduced. Full article
Show Figures

Figure 1

30 pages, 5387 KiB  
Article
Modelling Fractional Advection–Diffusion Processes via the Adomian Decomposition
by Alberto Antonini and Valentina Anna Lia Salomoni
Mathematics 2023, 11(12), 2657; https://doi.org/10.3390/math11122657 - 11 Jun 2023
Viewed by 1502
Abstract
When treating geomaterials, fractional derivatives are used to model anomalous dispersion or diffusion phenomena that occur when the mass transport media are anisotropic, which is generally the case. Taking into account anomalous diffusion processes, a revised Fick’s diffusion law is to be considered, [...] Read more.
When treating geomaterials, fractional derivatives are used to model anomalous dispersion or diffusion phenomena that occur when the mass transport media are anisotropic, which is generally the case. Taking into account anomalous diffusion processes, a revised Fick’s diffusion law is to be considered, where the fractional derivative order physically reflects the heterogeneity of the soil medium in which the diffusion phenomena take place. The solutions of fractional partial differential equations can be computed by using the so-called semi-analytical methods that do not require any discretization and linearization in order to obtain accurate results, e.g., the Adomian Decomposition Method (ADM). Such a method is innovatively applied for overcoming the critical issue of geometric nonlinearities in coupled saturated porous media and the potentialities of the approach are studied, as well as findings discussed. Full article
(This article belongs to the Special Issue Fractional Modeling, Control, Analysis and Applications)
Show Figures

Figure 1

13 pages, 5737 KiB  
Article
Migration of DNAPL in Saturated Porous Media: Validation of High-Resolution Shock-Capturing Numerical Simulations through a Sandbox Experiment
by Alessandra Feo, Fulvio Celico and Andrea Zanini
Water 2023, 15(8), 1471; https://doi.org/10.3390/w15081471 - 10 Apr 2023
Cited by 8 | Viewed by 2521
Abstract
This paper shows a comparison between experiments carried out in a laboratory-scale sandbox where the migration of a dense nonaqueous phase liquid (DNAPL), hydrofluoroether (HFE-7100), in a saturated porous medium was investigated, and validation was performed using high-resolution shock-capturing numerical simulations to resolve [...] Read more.
This paper shows a comparison between experiments carried out in a laboratory-scale sandbox where the migration of a dense nonaqueous phase liquid (DNAPL), hydrofluoroether (HFE-7100), in a saturated porous medium was investigated, and validation was performed using high-resolution shock-capturing numerical simulations to resolve the nonlinear governing coupled partial differential equations of a three-phase immiscible fluid flow. The contaminant was released using a colored fluid as a tracer for a fixed time and pressures different from the atmospheric one into the saturated zone, first by using a column laboratory experiment, and then a sandbox-scale example with a hydraulic gradient. A digital image analysis procedure was used to determine the saturation distribution of the contaminant during its migration. These results are compared with the values determined for a DNAPL migration in a similar porous media through a numerical simulation. They show good agreement with the experimental results and also show that CactusHydro can follow the migration of a plume evolution very precisely and can also be used to evaluate the effects and environmental impacts deriving from leaks of DNAPL in saturated zones. Full article
Show Figures

Figure 1

20 pages, 5714 KiB  
Article
Heat Transport during Colloidal Mixture of Water with Al2O3-SiO2 Nanoparticles within Porous Medium: Semi-Analytical Solutions
by Hashim, Muhammad Hafeez, Nidhal Ben Khedher, Sayed Mohamed Tag-EIDin and Mowffaq Oreijah
Nanomaterials 2022, 12(20), 3688; https://doi.org/10.3390/nano12203688 - 20 Oct 2022
Cited by 1 | Viewed by 1855
Abstract
In recent years, energy consumption has become an essential aspect in the manufacturing industry, and low heat transfer is one of the obstacles that affect the quality of the final product. This situation can be managed by suspending nanoparticles into ordinary heat transferring [...] Read more.
In recent years, energy consumption has become an essential aspect in the manufacturing industry, and low heat transfer is one of the obstacles that affect the quality of the final product. This situation can be managed by suspending nanoparticles into ordinary heat transferring fluid (the base fluid). This newly prepared colloidal suspension has better heat transport capabilities. Keeping such usage of nanofluids in mind, this research was performed to better understand the heat transport characteristics during flow analysis saturated in porous media subject to Al2O3-SiO2/water hybrid nanofluids. This flow problem was generated by a stretching/shrinking surface. The surface of the sheet was under the influence of mass suction and second-order partial slip. The boundary layer flow was formulated in a system of partial differential equations by utilizing basic conservation laws in conjunction with the Tiwari and Das nanofluid model. Then, the appropriate form of the similarity transformation was adapted to transform the model into a system of ordinary differential equations. The built-in function, i.e., the bvp4c function in the MATLAB software, solved the reduced form of the boundary layer model. The novelty of this study lay in the predicting of two different exact and numerical solutions for both the flow and temperature fields. The computed results showed that the medium porosity as well as the nanoparticle volume fraction widened the existence range of the dual solutions. In addition, the investigational output exposed the fact that the temperature fields were significantly enhanced by the higher nanoparticle volume fraction. Moreover, the outcomes of this study showed a superb correlation with existing works. The present results can be utilized in various branches of science and engineering such as the polymer industry and in the treatment of different diseases. Full article
(This article belongs to the Special Issue New Research on Heat Transfer with Properties of Nanofluids)
Show Figures

Figure 1

18 pages, 9376 KiB  
Article
Peristaltic Phenomenon in an Asymmetric Channel Subject to Inclined Magnetic Force and Porous Space
by Muhammad Ijaz Khan, Maha M. A. Lashin, Nidhal Ben Khedher, Bilal Ahmed, Sami Ullah Khan, Mowffaq Oreijah, Kamel Guedri, El Sayed Mohamed Tag-ElDin and Ahmed M. Galal
Bioengineering 2022, 9(10), 588; https://doi.org/10.3390/bioengineering9100588 - 20 Oct 2022
Cited by 3 | Viewed by 2316
Abstract
This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved [...] Read more.
This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The governing equations are to be solved completely, so that inertial effects can be studied. The numerical simulations and results are obtained by the help of a finite element method based on quadratic six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM) solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also compared with the results given in the literature which are highly convergent. It is concluded that velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity parameter K Increasing inertial forces increase the velocity of flow but increasing values of the porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic flow pattern. Full article
Show Figures

Figure 1

13 pages, 2092 KiB  
Article
Unsaturated Hydraulic Conductivity in Composite Porous Media
by Jhan Piero Rojas, Juan Carlos Ruge and Gustavo Adolfo Carrillo
Appl. Sci. 2022, 12(18), 9058; https://doi.org/10.3390/app12189058 - 9 Sep 2022
Cited by 2 | Viewed by 2452
Abstract
Determining the constitutive properties that describe the incipient hydraulic behavior of the materials, including the matrix domains and the distribution of macro and micropores, is crucial to analyzing the preferential water flow in saturated soils, ks, and unsaturated, ku. [...] Read more.
Determining the constitutive properties that describe the incipient hydraulic behavior of the materials, including the matrix domains and the distribution of macro and micropores, is crucial to analyzing the preferential water flow in saturated soils, ks, and unsaturated, ku. This study focused on determining the hydraulic conductivity in porous media under total and partial saturation conditions. The infiltration characteristics of three reconstituted soils were evaluated using five suction ranges employing conventional permeameters, an automated dual system, and mini-disk infiltrometers. The experimental cycles were carried out in granular soils with mixtures of diatomaceous soils, iron oxide (Fe2O3), and calcium carbonate (CaCO3) in 5–40% proportions. The differences between the granular microstructures of each material and the different hydraulic interaction mechanisms (suctione levels) significantly affected the values of ks and ku and the coupling between the pore domains and the defined water regime. Additionally, a lower impact was observed in the data set exposed to higher percentages of Fe2O3 and CaCO3 in different suction ranges, mainly due to a tension effect (meniscus) generated by suction in the granular skeleton. Since both parameters are mutually correlated and have a similar impact between methods and soil cores, ks and ku must be optimized simultaneously in each mechanism analyzed. The main findings of this work result in the confirmation that the unsaturated permeability decreases as suction is imposed on the sample. As well as the addition of different materials with Particle Size Distribution finer than the base sample, it also reveals a reduction in hydraulic conductivity, both saturated and unsaturated. Full article
(This article belongs to the Special Issue Road Materials and Sustainable Pavement Design)
Show Figures

Figure 1

12 pages, 669 KiB  
Article
A Nonlinear Multigrid Method for the Parameter Identification Problem of Partial Differential Equations with Constraints
by Tao Liu, Jiayuan Yu, Yuanjin Zheng, Chao Liu, Yanxiong Yang and Yunfei Qi
Mathematics 2022, 10(16), 2938; https://doi.org/10.3390/math10162938 - 15 Aug 2022
Cited by 8 | Viewed by 1758
Abstract
In this paper, we consider the parameter identification problem of partial differential equations with constraints. A nonlinear multigrid method is introduced to the process of parameter inversion. By keeping the objective functions on coarse grids consistent with those on fine grids, the proposed [...] Read more.
In this paper, we consider the parameter identification problem of partial differential equations with constraints. A nonlinear multigrid method is introduced to the process of parameter inversion. By keeping the objective functions on coarse grids consistent with those on fine grids, the proposed method reduces the dimensions of objective functions enormously and mitigates the risk of trapping in local minima effectively. Furthermore, constraints significantly improve the convergence ability of the method. We performed the numerical simulation based on the porosity identification of elastic wave equations in the fluid-saturated porous media, which suggests that the nonlinear multigrid method with constraints decreases the computational expenditure, suppresses the noise, and improves the inversion results. Full article
(This article belongs to the Special Issue Inverse Problems and Imaging: Theory and Applications)
Show Figures

Figure 1

20 pages, 6624 KiB  
Article
Computer Simulation of the Seismic Wave Propagation in Poroelastic Medium
by Dana Bliyeva, Dossan Baigereyev and Kholmatzhon Imomnazarov
Symmetry 2022, 14(8), 1516; https://doi.org/10.3390/sym14081516 - 25 Jul 2022
Cited by 6 | Viewed by 2105
Abstract
This article presents an algorithm for the numerical solution of an initial-boundary value problem for a symmetric t-hyperbolic system of partial differential equations. This problem is based on continual filtration model, which describes the propagation of seismic waves in a poroelastic medium saturated [...] Read more.
This article presents an algorithm for the numerical solution of an initial-boundary value problem for a symmetric t-hyperbolic system of partial differential equations. This problem is based on continual filtration model, which describes the propagation of seismic waves in a poroelastic medium saturated with a fluid characterized by such physical parameters as the propagation velocities of longitudinal P- (fast and slow) and transverse S-waves, the density of the medium materials, and porosity. The system of linearized equations of saturated porous media is formulated in terms of physical variables of the velocity–stress tensor of the porous matrix and the velocity–pressure of the saturating fluid in the absence of energy dissipation. The solution is implemented numerically using an explicit finite difference upwind scheme built on a staggered grid to avoid the appearance of oscillations in the solution functions. The program code implementing parallel computing is developed in the high-performance Julia programming language. The possibility of using the approach is demonstrated by the example of solving the problem of propagation of seismic waves from a source located in the formation. Computational experiments based on real data from oil reservoirs have been implemented, and dynamic visualization of solutions consistent with the first waves arrival times has been obtained. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

23 pages, 5725 KiB  
Article
Green Synthesis of Magnetite-Based Catalysts for Solar-Assisted Catalytic Wet Peroxide Oxidation
by Jorge López, Ana Rey, Juan F. García-Araya and Pedro M. Álvarez
Catalysts 2022, 12(3), 271; https://doi.org/10.3390/catal12030271 - 28 Feb 2022
Cited by 3 | Viewed by 2535
Abstract
A novel synthesis method under green philosophy for the preparation of some magnetite-based catalysts (MBCs) is presented. The synthesis was carried out in aqueous media (i.e., absence of organic solvents) at room temperature with recovery of excess reactants. Terephthalic acid (H2BDC) [...] Read more.
A novel synthesis method under green philosophy for the preparation of some magnetite-based catalysts (MBCs) is presented. The synthesis was carried out in aqueous media (i.e., absence of organic solvents) at room temperature with recovery of excess reactants. Terephthalic acid (H2BDC) was used to drive the synthesis route towards magnetite. Accordingly, bare magnetite (Fe3O4) and some hybrid magnetite-carbon composites were prepared (Fe3O4-G, Fe3O4-GO, and Fe3O4-AC). Graphene (G), graphene oxide (GO), and activated carbon (AC) were used as starting carbon materials. The recovered H2BDC and the as-synthetized MBCs were fully characterized by XRD, FTIR, Raman spectroscopy, XPS, SQUID magnetometry, TGA-DTA-MS, elemental analysis, and N2-adsorption-desorption isotherms. The recovered H2BDC was of purity high enough to be reused in the synthesis of MBCs. All the catalysts obtained presented the typical crystalline phase of magnetite nanoparticles, moderate surface area (63–337 m2 g−1), and magnetic properties that allowed their easy separation from aqueous media by an external magnet (magnetization saturation = 25–80 emu g−1). The MBCs were tested in catalytic wet peroxide oxidation (CWPO) of an aqueous solution of metoprolol tartrate (MTP) under simulated solar radiation. The Fe3O4-AC materials showed the best catalytic performance among the prepared MBCs, with MTP and total organic carbon (TOC) removals higher than 90% and 20%, respectively, after 3 h of treatment. This catalyst was fairly successfully reused in nine consecutive runs, though minor loss of activity was observed, likely due to the accumulation of organic compounds on the porous structure of the activated carbon and/or partial oxidation of surface Fe2+ sites. Full article
Show Figures

Graphical abstract

26 pages, 37485 KiB  
Article
Modelling of Static Liquefaction of Partially Saturated Non-Cohesive Soils
by Waldemar Świdziński and Marcin Smyczyński
Appl. Sci. 2022, 12(4), 2076; https://doi.org/10.3390/app12042076 - 16 Feb 2022
Cited by 12 | Viewed by 5481
Abstract
Static soil liquefaction is widely known to be a serious danger to the stability of structures. The phenomena governing pore water generation, which leads to liquefaction in fully saturated soils, are already quite well described. However, much less is known of these phenomena [...] Read more.
Static soil liquefaction is widely known to be a serious danger to the stability of structures. The phenomena governing pore water generation, which leads to liquefaction in fully saturated soils, are already quite well described. However, much less is known of these phenomena occurring in partially saturated porous media, although this, too, is an important issue in geotechnics. This study presents the application of a semi-empirical model to predict the response of partially saturated soils under undrained conditions. The model proposed is based on an incremental equation describing the pre-failure undrained response of partially saturated non-cohesive soils during monotonic shearing in a standard triaxial test. Improved differential equations taking into account pore fluid compressibility were implemented together with empirical coefficients describing soil skeleton compressibility during the unloading phase. Model coefficients were determined in triaxial compression tests. The influence of the saturation level represented by Skempton’s parameter B on the full spectrum of predicted stress paths was shown. For the analyzed saturation range, the maximum stress deviator normalized by initial mean effective stress varied from 0.38 to 1.67 for B values between 0.93 and 0.29, respectively. Model predictions were confronted with the results of triaxial tests for two types of non-cohesive soils (quartz medium sand and copper ore post-flotation industrial tailings). Good agreement between experimental data and theoretical predictions was achieved. Full article
(This article belongs to the Special Issue New Frontiers in Sustainable Geotechnics)
Show Figures

Figure 1

15 pages, 2954 KiB  
Article
A Regularization Homotopy Strategy for the Constrained Parameter Inversion of Partial Differential Equations
by Tao Liu, Runqi Xue, Chao Liu and Yunfei Qi
Entropy 2021, 23(11), 1480; https://doi.org/10.3390/e23111480 - 9 Nov 2021
Cited by 8 | Viewed by 2148
Abstract
The main difficulty posed by the parameter inversion of partial differential equations lies in the presence of numerous local minima in the cost function. Inversion fails to converge to the global minimum point unless the initial estimate is close to the exact solution. [...] Read more.
The main difficulty posed by the parameter inversion of partial differential equations lies in the presence of numerous local minima in the cost function. Inversion fails to converge to the global minimum point unless the initial estimate is close to the exact solution. Constraints can improve the convergence of the method, but ordinary iterative methods will still become trapped in local minima if the initial guess is far away from the exact solution. In order to overcome this drawback fully, this paper designs a homotopy strategy that makes natural use of constraints. Furthermore, due to the ill-posedness of inverse problem, the standard Tikhonov regularization is incorporated. The efficiency of the method is illustrated by solving the coefficient inversion of the saturation equation in the two-phase porous media. Full article
(This article belongs to the Special Issue Probabilistic Methods for Inverse Problems II)
Show Figures

Figure 1

Back to TopTop